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Abstract

We review six methods for measuring the CP -violating phases φub and φtd of the CKM
matrix via B decays that are free from uncertainties due to strong final-state phases:

1. B decays to D0X, D
0
X, and D0

1,2X where X �= X .

Ex: B+ → DK+ and B0
d → DK�0 measure φub.

2. Neutral B-meson decays to f and f where f �= f .

Ex: B0
d → D±π∓ measures 2φtd + φub and B0

s → D±
s K

∓ measures φub.

3. Neutral B-meson decays to D0X, D
0
X, and D0

1,2X where X = X.

Ex: B0
d → DK0

S measures φub, 2φub + φtd and φub + φtd, and B0
s → Dφ measures φub.

4. Neutral B-meson decays to CP eigenstates.

Ex: B0
d → J/ψK0

S measures φtd, B
0
d → π+π− measures φtd + φub, and B0

s → ρ0K0
S

measures φub.

5. B decays to sets of final states related by isospin.

Ex: B0
d → π+π−, π0π0 and B+ → π+π0 measure φtd + φub free from uncertainty due

to penguin contributions.

6. Angular analysis of B decays to mixtures of CP eigenstates.

Ex: B0
d → J/ψK0

Sπ
0 and D�+D�− measure φtd, and B0

d → ρ+ρ− and ρ0ρ0 measure
φtd + φub.

All of these except the well-known method 4 involve non-CP eigenstates. Methods 1-3 allow
extraction of φub from Bu and Bd, and will require greater emphasis on Kaon identification
than methods 4-6. Methods 5 and 6 require photon detection in most cases. Method 1 does
not require tagging of the particle/antiparticle character of the second B, and so could be
used at a symmetric e+e− collider without the penalty due to mixing of methods 2-6. The
mode B0

d → J/ψK0
S which measures φtd via method 4 is the most accessible of all those

considered here.
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1 Introduction

Discussion of prospects for measurement of CP violation in the B-meson system has often
centered on analysis of decays to neutral B’s to CP eigenstates because phases due to strong
final-state interactions do not complicate the interpretation of the data. However, the rates
to some channels of interest, particularly B0

s → ρ0K0
S which isolates the phase of the CKM

matrix element Vub, may be too low for practical experimentation. Over the last two years
several papers have appeared that discuss how analysis of certain groups of B decays to non-
CP eigenstates can separate the strong, CP -conserving, phases from the weak, CP -violating
phases of interest.

In this note we review the proposed methods of analysis, based on conversations with
David London, as well as the original papers. Our discussion will emphasize decay modes
that could be analyzed at a hadron collider. Recent reviews covering much of the same
material have been given by Kayser [1] and by Dunietz [2]. Study of non-CP eigenstates at
e+e− colliders has been examined in refs. [3] and [4].

1.1 The Need for Interference in CP -Violating Processes

In the Standard Model, CP violation in a process described by a single graph manifests itself
only as a phase factor. If the amplitude for a single graph B → f is written

A(B → f) ≡ Af = |Af | eiφW eiδS , (1)

where φW is a phase due to the weak interaction, and δS is a phase due to strong final-state
interactions, then the CP conjugate process has amplitude

A(B → f ) ≡ Af = |Af | e−iφW eiδS . (2)

Hence CP violation cannot be discerned as a rate difference between a decay and its CP -
conjugate decay if only a single graph contributes to the amplitude.

CP violation can only be revealed in total-rate measurements of B → f and B → f
when there is interference between two or more decay amplitudes with differing weak phases
and differing strong phases. To verify the last remark, consider the case where two graphs
contribute to a decay, written as

A(B → f) = |A1| eiφ1eiδ1 + |A2| eiφ2eiδ2, (3)

so the CP -conjugate decay has amplitude

A(B → f) = |A1| e−iφ1eiδ1 + |A2| e−iφ2eiδ2. (4)

The corresponding decay rates are given by

Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ+ δ), (5)

and
Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ− δ), (6)
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where φ = φ1−φ2 and δ = δ1−δ2. Only if both φ and δ are nonvanishing can the interference
term be determined from measurements of the two decay rates.

Even if this condition is satisfied the strong-interaction phase difference δ and the mag-
nitudes |Af | and

∣∣∣Af

∣∣∣ will not typically be known, and the CP -violating phase cannot be
determined. In this note we examine six methods by which the uncertainties due to strong
phases can be avoided. These are introduced in the following subsection, and then discussed
in greater detail in the subsequent sections.

1.2 Six Methods for Extracting CP -Violating Phases

1. B decays to D0X, D
0
X, and D0

1,2X where X �= X

When a B particle can decay both to D0X and D
0
X (and so B decays to both D

0
X

and D0X), then the decays

B → D0
1,2X, and B → D0

1,2X, where D0
1,2 ≡

D0 ±D
0

√
2

, (7)

exhibit a CP -violating asymmetry. Measurement of the six (or eight) decay modes
listed will permit isolation of the CP -violating amplitude, both in magnitude and
phase.

The final state D0X need not be self conjugate, and it is actually desirable that it not
be, so that no effects of mixing are present, and no tagging of the second B is needed.
Thus method 1 could be used at a symmetric e+e− collider without the penalty due to
mixing of methods 2-6. This method works both for decays of B-mesons and b-baryons.

The general approach of methods 1-3 was largely anticipated by Carter and Sanda
[5, 6], but recent interest stems from the more specific formulation of Gronau and
London [7]. Method 1 as distinct from method 3 was first examined by Gronau and
Wyler [8], with further discussions given by Dunietz [9, 10]. Application of method 1
to b-baryons was first discussed by Aleksan, Dunietz and Kayser [11].

If CP violation is found in such an analysis then it cannot be due to to superweak
model, which postulates that CP violation occurs only in mixing of neutral mesons.
Thus method 1 may be used to circumvent possible ambiguities [12] in the use of
method 4 to prove or disprove the superweak model.

2. Neutral B-meson decays to f and f where f �= f

If a neutral B-meson decays to both a final state f and its CP -conjugate state f , then
the interference of amplitudes needed for measurable CP violation arises due to mixing
(whether or not there is CP violation in the mixing). A time-dependent analysis of
the four decay modes B(B) → f, f can isolate the CP -violating phase.

Tagging of the particle-antiparticle character of the second B in the event is required.

The original paper on method 2 is by Gronau and London [7]. Discussion of method
2 as separate from method 3 was first been given by Aleksan et al. [13]. Method 2 is
an improvement on earlier discussions by Du, Dunietz and Wu [14], and Dunietz and
Rosner [15] in which only two of the four related decays were utilized.
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3. Neutral B-meson decays to D0X, D
0
X, and D0

1,2X where X = X

If a neutral B-mesons decays to both a final state D0X and D
0
X where X is self

conjugate (CP (X) ≡ X = ±X), then methods 1 and 2 can be combined. In a case of
interest two different CP -violating phases can be determined from the time-dependent
analysis of six (or eight) related decay modes.

As previously mentioned, method 3 was first discussed by Gronau and London [7].

4. Neutral B-meson decays to CP eigenstates

If a neutral B-meson decays to a final state f that is a CP eigenstate, then as in
method 2, CP violation becomes observable via the interference due to mixing. But
since only a single final state is involved the strong-interaction phase does not appear.
Thus we recover the well-known result that a time dependent analysis of the two modes
B(B) → f can isolate the CP -violating phases.

The advantages of measuring decays to CP eigenstates were first noted by Bigi and
Sanda [16]. The important relation between decays to CP eigenstates and unitarity
of the CKM matrix was first emphasized by Bjorken [17, 18], and will be reviewed in
the following sec. 1.3. The measurement of the three angles of the unitarity triangle
by three specific decays to CP eigenstates was first proposed by Krawczyk et al. [19].

5. B decays to sets of final states related by isospin

In decays B+
u → f+ and B0

d → f0 where the final states each arise due to the inference
of two amplitudes, and f+ and f0 are related by isospin, the CP -violating phase can
be isolated by a detailed isospin analysis.

The utility of the isospin analysis in removing uncertainties due to penguin diagrams
in B decays was first demonstrated by Gronau and London [20]. Further discussions
have been given by Nir and Quinn [21], by Lipkin et al. [22] and by Gronau [23].

6. Angular analysis of B decays to mixtures of CP eigenstates

If a neutral B-meson decays to a self-conjugate state f , but this is not a pure CP
eigenstate (as holds when f consists of two spin-1 mesons) method 4 cannot be carried
out. However, a detailed analysis of the angular distribution of the secondary-decay
products can separate the final state into CP (even) and CP (odd) components and the
CP -violating phase extracted.

Methods of angular analysis for B decays to mixtures of CP eigenstates have been
presented for several years [24, 25, 26], with recent discussion by Kayser et al. [27], by
Dunietz et al. [28], and by Kramer and Palmer [29, 30].

1.3 The Unitarity Test

In view of the variety of methods of measuring the phases of the CKM matrix elements it is
useful to have an overall goal in pursuing an experimental program. This has been elegantly
defined by Bjorken [17, 18] as a test of unitarity of the CKM matrix. This will provide a

3



comprehensive test of the Standard Model view of CP violation as arising from phases in
the transformation between the three generations of strong and weak quark base states.

We will discuss the CKM matrix in the Wolfenstein notation [31]:

VCKM =

⎛
⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠

≈
⎛
⎜⎝

1 − λ2/2 + λ4/24 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 − λ4(A2/8 − 1/24) Aλ2

Aλ3(1 − ρ − iη) −Aλ2 + Aλ4(1/2 − ρ − iη) 1 −A2λ4/2

⎞
⎟⎠ ,

(8)

carrying the expansion in the parameter λ (≈ the Cabibbo angle) to fourth order [19]. From
measurements of the B-meson lifetime it is known that A ≈ 1. CP violation arises in the
Standard Model because η �= 0.

The unitarity of VCKM implies that

∑
k

VikV
∗
jk = δij =

∑
k

VkiV
∗
kj . (9)

Of these 18 conditions the one obtained using the first and third rows (or almost equivalently,
the first and third columns) is especially suitable for testing via measurements of weak phase
angles:

0 = V ∗
udVtd + V ∗

usVts + V ∗
ubVtb ≈ Vtd + λVts + V ∗

ub. (10)

Regarding Vtd, λVts and Vub as vectors they form a closed triangle in the complex plane [32].
On dividing their lengths by Aλ3, we obtain the picture of Figure 1 in the (ρ, η) plane.

Figure 1: a) The unitarity triangle in the notation of the present work.
b) The unitarity triangle as sketched by Bjorken when he first proposed
the unitarity test [17].

The unitarity test then consists of measuring the magnitudes and phases of these three
vectors to confirm that they form a closed triangle. It is anticipated that measurement of
the magnitude of Vtd via its role in the box diagram governing B0

d mixing [33] will remain
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subject to theoretical uncertainties due to strong-interaction effects for some time to come.
The insight of Bjorken was that a test of the closure of the unitarity triangle can be based
on measurement of the three interior angles ϕ1, ϕ2, ϕ3, which should sum to π. These
three angles, and the area A2λ6η/2 of the unitarity triangle are invariant under the choice
of representation of the CKM matrix [34].

In the Wolfenstein parametrization the three angles ϕi can be related to phases of CKM
matrix elements according to

ϕ1 = 2π − φ(Vtd) ≡ 2π − φtd,

ϕ2 = π − ϕ1 − ϕ3 = −π + φtd + φub,

ϕ3 = φ(V ∗
ub) = −φ(Vub) ≡ −φub.

(11)

A favorable theoretical result is that method 4, the study of neutral B decays to CP
eigenstates, can in principle determine all three angles ϕi by measurement of three different
decays [19]. However, the anticipated difficulty in measuring φub via decays such as B0

s →
ρ0K0

S , due to the small branching ratios (and poor signal of Bs at e+e− colliders), has been
a motivation to explore the additional methods of analysis of CP violation reviewed in this
paper.

2 Method 1: B Decays to D0X, D
0
X, and D0

1,2X where

X �= X

When a B meson (i.e., one that contains a b-quark) decays to D
0
X via a spectator graph

(graphs I and II of fig. 3 in the Appendix) this involves a b → c transition, and hence no
weak phase:

A(B → D
0
X) =

∣∣∣Af

∣∣∣ eiδ
f , (12)

where δf is a final-state strong-interaction phase. But when a B meson decays to D0X this

involves the transition b→ u and hence the weak phase −φub appears in the amplitude:

A(B → D0X) = |Af | e−iφubeiδf , (13)

The two amplitudes Af and Af interfere when the D forms one of the CP eigenstates

D0
1,2 = (D0 ±D

0
)/
√

2:

A(B → D0
1,2X) = (|Af | e−iφubeiδf ±

∣∣∣Af

∣∣∣ eiδ
f )/

√
2. (14)

In eqs. (12-13) we have supposed that all graphs contributing to each decay have the same
weak phases (which is not necessarily true, as discussed below).

When X �= X the decays are self-tagging as to whether the parent was a B or a B. Then
even for neutral B’s there is no effect due to mixing on the observed decay rates. Method 1
could be used at a symmetric e+e− collider without the penalty due to mixing of methods
2-6.
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Assuming equal production rates for B and B the decay rates are proportional to the
number of decays observed. We can therefore measure

Γ(B → D
0
X) = Γ(B → D0X) ∝

∣∣∣Af

∣∣∣2 ,
Γ(B → D0X) = Γ(B → D

0
X) ∝ |Af |2 ,

Γ(B → D0
1,2X) ∝ (

∣∣∣Af

∣∣∣2 + |Af |2)/2 ±
∣∣∣Af

∣∣∣ |Af | cos(φub + δ),

Γ(B → D0
1,2X) ∝ (

∣∣∣Af

∣∣∣2 + |Af |2)/2 ±
∣∣∣Af

∣∣∣ |Af | cos(φub − δ),

(15)

recalling eq. (2), and defining δ = δf − δf as the strong-interaction phase difference.

Thus there are eight possible measurements depending on the four quantities
∣∣∣Af

∣∣∣, |Af |,
cos(φub + δ) and cos(φub − δ). Therefore we can deduce |φub ± δ| and hence determine φub

up to a fourfold ambiguity:

φub =
± |φub + δ| ± |φub − δ|

2
. (16)

The strong phase difference δ depends on the particular final state D0X studied, so if these
measurements can be carried out for different X the discrete ambiguity may be removable.

In contrast to sec. 1.1 where only two rate measurements were considered, the use of
4-8 measurements in the present method permits φub to be determined whether on not the
strong interaction phase difference δ is nonvanishing. Indeed, it would be preferable if δ were
zero, as the discrete ambiguity is only twofold in this case.

We now consider examples of particular decay modes that might be used to implement
this procedure. First, we consider the question of identifying the CP eigenstates D0

1,2. From
Table 8 of the Appendix in which the basic two-body decays of the D0 are listed we infer
that the CP (even) state D0

1 can decay according to

D0
1 → π+π−, K+K−, K0

SK
0
S , K

0
LK

0
L, K

0
Lπ

0, K0
Lη, K

0
Lρ

0, K0
Lω, K

0
Lφ, etc. (17)

and the the CP (odd) state D0
2 can decay to

D0
2 → K0

Sπ
0, K0

Sη, K
0
SK

0
L, K

0
Sρ

0, K0
Sω, K

0
Sφ, etc. (18)

Several of the decays of the D0
2 have been observed, and the fraction of D0’s that decay as

D0
2 is at least 2%. However, all D0

2 decays except K0
Sρ

0 → π+π−π+π− K0
Sφ→ π+π−K+K−

involve at least two final-state photons. If we suppose that only all-charged final-states
will be reconstructed at a hadron collider, then only about 0.5% of all D0’s will decay to
identifiable D0

2 modes. The D0
1 decays predominantly to all-charged daughters, but again

only about 0.5% of all D0’s will decay to identifiable D0
1 modes. In sum, about 2-5% of D0’s

might be usable for the D0
1,2 analysis at an e+e− collider, but only about 1% at a hadron

collider.
In principle the decays B → D�0X decays are also usable for the present analysis as

D�0
1,2 = (D�0 ±D

�0
)/
√

2 are CP (even) and (odd) eigenstates, respectively. However, in the
decays D�0 → D0π0 and D0γ the final-state orbital angular momentum is one in both cases
and so the CP eigenstates decay according to

D�0
1 → D0

1π
0, but D�0

1 → D0
2γ, etc. (19)
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Hence the D�0
1,2 states can only be correctly identified if the single γ can be distinguished

from the π0. As both the γ and π0 are quite soft this may be possible at an e+e− collider
but is problematic at a hadron collider.

Finally we consider specific B-decay modes that are suitable for method 1. Referring to
Tables 2-5 in the Appendix we find the following candidates:

B+
u →

⎧⎪⎨
⎪⎩
D

0
π+ [IF , IIF ]

D0π+ [IID, IIID]
,

⎧⎪⎨
⎪⎩
D

0
K+ [IS, IIS ]

D0K+ [IIS , IIIS]
,

B0
d →

⎧⎪⎨
⎪⎩
D

0
K�0 [IIS]

D0K�0 [IIS]
,

B0
s →

⎧⎪⎨
⎪⎩
D

0
K�0 [IIF ]

D0K�0 [IID]
,

B+
c →

⎧⎪⎨
⎪⎩
D

0
D+ [IIF , IIIF ]

D0D+ [ID, IID]
,

⎧⎪⎨
⎪⎩
D

0
D+

s [IIS, IIIS]

D0D+
s [IS, IIS]

.

(20)

The roman numerals refer to the type of graph, as shown in fig. 3 of the Appendix, and
the subscripts F , S, and D refer to CKM-favored (order λ2), -suppressed (order λ3), and
-doubly-suppressed (order λ4), respectively. In addition, b-baryons have suitable modes, such

as Λ0
b (udb) → ΛD0(D

0
), Λ+

b (udb) → Σ+D0(D
0
), Σ0

b (usb) → Ξ0D0(D
0
), etc. [10], which we

will not discuss further.
Among the candidate B-meson decays, only B0

d → D0(D
0
)K�0 is ideally suited for

method 1, as only one graph contributes to each decay and these are both singly CKM-
suppressed type-II (color-suppressed) spectator graphs. These decays have not yet been
observed, but should have branching ratios of order 10−5. If only about 1% of the decays are
useful for the D0

1,2 analysis, the effective branching ratio is about 10−7. So at least 109 B’s
must be produced to carry out method 1. Some advantage is gained by considering several
channels, but since the strong phase difference varies from channel to channel, there must
be enough events in each channel to carry out the analysis separately before results for φub

can be combined. Hence method 1 may be out of range of e+e− B factories with luminosity
of 3 × 1033 cm−2sec−1, even though the method is well-suited in principle to them.

The other five candidate decay pairs listed above all suffer from the rate for D0X being

at least an order of magnitude less than that for D
0
X (or vice versa), so the interference

term in D0
1,2X is quite small. However, the branching fraction for B+ → D0K+ is likely

to be very similar to that for B0
d → D0K�0. Since the statistical accuracy of method 1 is

largely set by the number of events of whichever of D0X or D
0
X has the lower branch, we

conclude that B+ → D0(D
0
)K+ is about as useful as B0

d → D0(D
0
)K�0.

If Bc mesons were produced as copiously as B+ and B0
d then the decay pair B+

c →
D0(D

0
)D+

s would be also be useful. However, Bc production is likely to be suppressed at
both e+e− and hadron colliders.
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3 Method 2: Neutral B-Meson Decays to f and f

where f �= f

In the second method the needed interference arises from mixing of a B0 and B
0
. The

analysis is more straightforward if the final state f is not self conjugate (f �= f), but then

both the B0 and B
0

must decay to both f and f .
As for decay pairs suitable for method 1, one of the decay pairs (here called f) proceeds

via a b → c transition, and the other (f) via b→ u. So we may write

A(B0 → f) =
∣∣∣Af

∣∣∣ eiδ
f ,

A(B0 → f) = |Af | e−iφubeiδf ,

A(B
0 → f) =

∣∣∣Af

∣∣∣ eiδ
f ,

A(B
0 → f) = |Af | eiφubeiδf ,

(21)

using eq. (2). In writing this we must be able to assume that each amplitude is dominated
by a single weak phase.

Due to mixing, a particle that was created as a B0 (or B
0
) at t = 0 has evolved by time

t to the state we label as B0(t) (or B
0
(t)) according to

B0(t) = e−iMte−t/2[cos(xt/2)|B0〉 + ie2iφM sin(xt/2)|B0〉],
B

0
(t) = e−iMte−t/2[ie−2iφM sin(xt/2)|B0〉 + cos(xt/2)|B0〉],

(22)

where throughout this paper we measure time in units of the relevant B lifetime, x = ΔM/Γ

is the mixing parameter, and the relative amount of |B0〉 and |B0〉 in the weak eigenstate
B0

S is given by a pure phase coming from the box diagram [33], where

φM =

⎧⎪⎨
⎪⎩
φtd, for B0

d

φts ≈ 0, for B0
s

(23)

The four time-dependent decay rates are then

Γ(B0(t) → f) ∝ e−t[
∣∣∣Af

∣∣∣2 cos2(xt/2) + |Af |2 sin2(xt/2) − S sin(xt)],

Γ(B0(t) → f) ∝ e−t[|Af |2 cos2(xt/2) +
∣∣∣Af

∣∣∣2 sin2(xt/2) − S sin(xt)],

Γ(B
0
(t) → f) ∝ e−t[

∣∣∣Af

∣∣∣2 cos2(xt/2) + |Af |2 sin2(xt/2) + S sin(xt)],

Γ(B
0
(t) → f) ∝ e−t[|Af |2 cos2(xt/2) +

∣∣∣Af

∣∣∣2 sin2(xt/2) + S sin(xt)],

(24)

where δ = δf − δf is the strong-interaction phase difference, and

S = |Af |
∣∣∣Af

∣∣∣ sin(2φM + φub − δ), and S = |Af |
∣∣∣Af

∣∣∣ sin(2φM + φub + δ). (25)
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For eventual Fourier analysis it is preferable to write eqs. (24) as

Γ(B0(t) → f) ∝ e−t[K + C cos(xt)− S sin(xt)],

Γ(B0(t) → f) ∝ e−t[K −C cos(xt) − S sin(xt)],

Γ(B
0
(t) → f) ∝ e−t[K + C cos(xt) + S sin(xt)],

Γ(B
0
(t) → f) ∝ e−t[K −C cos(xt) + S sin(xt)],

(26)

where
K = (

∣∣∣Af

∣∣∣2 + |Af |2)/2, and C = (
∣∣∣Af

∣∣∣2 − |Af |2)/2. (27)

From measurement of these four time-dependent decay rates one deduces the four quan-
tities |Af |,

∣∣∣Af

∣∣∣, sin(2φM + φub + δ), and sin(2φM + φub − δ). Thus we can measure

|π/2 − 2φM − φub ± δ| and thereby determine 2φM + φub up to a fourfold ambiguity:

2φM + φub =
π ± |π/2 − 2φM − φub + δ| ± |π/2 − 2φM − φub ± δ|

2
. (28)

As for method 1, the use of four rate measurements permits the weak phase 2φM + φub to
be extracted even when the strong phase difference δ vanishes.

To carry out the above analysis we must know for each decay whether the B was created

as a B0 or a B
0
. The decays are not self tagging since both B0 and B

0
can decay to both

f and f , so in method 2 (as well as methods 3-6) one must tag the particle/antiparticle
character of the second B in the event. As that B may also be subject to mixing, a dilution
of the statistical power of the method results. In particular, it is well-known that at an e+e−

collider when the B-B pair is produced in a C(odd) state the interesting terms in sin(xt) in
eqs. (28) cannot be measured unless the B’s have relativistic velocity in the lab frame. This
‘penalty’ due to mixing can only be overcome by use of an asymmetric e+e− collider if the
center-of-mass energy is that of the Υ(4S).

From Tables 3 and 4 of the Appendix we find that there are 4 candidate decays pairs for
implementing method 2:

B0
d →

⎧⎪⎨
⎪⎩
D−π+ [IF , IVF ]

D+π− [ID, IVD]
,

⎧⎪⎨
⎪⎩
D−

s K
+ [IVF ]

D+
s K

− [IVD]
,

B0
s →

⎧⎪⎨
⎪⎩
D−

s K
+ [IS, IVS ]

D+
s K

− [IS, IVS ]
,

⎧⎪⎨
⎪⎩
D−π+ [IVS]

D+π− [IVS]
,

(29)

In each example the lower decay depends on the weak phase −φub. The type-IV W -exchange
graphs (fig. 3) may well be highly suppressed compared to the type-I spectator graphs.
Thus of the four candidates, only B0

s → D±
s K

∓ is likely to have reasonably large (∼ 10−4)
branching ratios for both channels. This renders method 2 largely unsuitable for an e+e−

collider, where production of Bs mesons will be low. At a hadron collider where only all-
charged daughters are used in reconstructing the Bs about 5-10% of the Ds decays will be
useful. Accounting for dilutions due to mixing of the second B at a hadron collider, some
108-109 Bs are needed to implement method 2.

If method 2 is used for the decays B0
s → D±

s K
∓ the weak phase that is measured in just

φub, since the mixing phase φM vanishes for B0
s .
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4 Method 3: Neutral B-Meson Decays to D0X, D
0
X,

and D0
1,2X where X = X

Aspects of methods 1 and 2 are combined when a neutral B-meson decays to final state D0X
where X is self conjugate (X = X). Now interference arises both from mixing and from the
use of D0

1,2 channels.
Following eqs. (12-14) and (21) we write the eight related decay amplitudes as

A(B0 → D
0
X) =

∣∣∣Af

∣∣∣ eiδ
f ,

A(B0 → D0X) = |Af | e−iφubeiδf ,

A(B
0 → D0X) =

∣∣∣Af

∣∣∣ eiδ
f ,

A(B
0 → D

0
X) = |Af | eiφubeiδf ,

A(B0 → D0
1,2X) = (|Af | e−iφubeiδf ±

∣∣∣Af

∣∣∣ eiδ
f )/

√
2 ≡ A1,2,

A(B
0 → D0

1,2X) = (
∣∣∣Af

∣∣∣ eiδ
f ± |Af | eiφubeiδf )/

√
2 ≡ A1,2.

(30)

Because both D0X and D
0
X can be reached from both B0 and B

0
, mixing must always be

taken into account. In addition to the four time-dependent decay rates given in eq. (26),
there are four more involving D0

1,2 obtained by combining eqs. (22) and (30):

Γ(B0(t) → D0
1,2X) ∝ e−t[|A1,2|2 cos2(xt/2) +

∣∣∣A1,2

∣∣∣2 sin2(xt/2) − S1,2 sin(xt)],

= e−t[K1,2 − C1,2 cos(xt) − S1,2 sin(xt)],

Γ(B
0
(t) → D0

1,2X) ∝ e−t[
∣∣∣A1,2

∣∣∣2 cos2(xt/2) + |A1,2|2 sin2(xt/2) + S1,2 sin(xt)],

= e−t[K1,2 + C1,2 cos(xt) + S1,2 sin(xt)],

(31)

where

|A1,2|2 = (
∣∣∣Af

∣∣∣2 + |Af |2)/2 ±
∣∣∣Af

∣∣∣ |Af | cos(φub + δ),∣∣∣A1,2

∣∣∣2 = (
∣∣∣Af

∣∣∣2 + |Af |2)/2 ±
∣∣∣Af

∣∣∣ |Af | cos(φub − δ),

K1,2 = (
∣∣∣Af

∣∣∣2 + |Af |2)/2 ±
∣∣∣Af

∣∣∣ |Af | cosφub cos δ,

C1,2 = ±
∣∣∣Af

∣∣∣ |Af | sinφub sin δ,

S1,2 = 2 |Af |
∣∣∣Af

∣∣∣ sin(2φM + φub) cos δ ± |Af |2 sin 2(φM + φub) ±
∣∣∣Af

∣∣∣2 sin 2φM ,

(32)

and δ = δf − δf is the strong-interaction phase difference.

From analysis of the four time-dependent rates (26) we deduce |Af |,
∣∣∣Af

∣∣∣, sin(2φM +

φub + δ) and sin(2φM +φub − δ). Then from the coefficients K1,2 and C1,2 of eqs. (31) we also
extract cosφub cos δ and sinφub sin δ. Finally, from the coefficient of sin(xt) we can extract
sin(2φM + φub) cos δ, sin 2(φM + φub) and sin 2φM .
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Thus method 3 leads to the simultaneous measurement of φM , φub, φM+φub and 2φM+φub.
In case of B0

d mesons for which φM = φtd (see eq. (23)) φtd and φub and φtd+φub are measured
at once. It is remarkable that all three of the phase angles of the unitarity triangle can be
extracted from the analysis of a single family of B0

d decays.
From Tables 3 and 4 of the Appendix we find that there are six candidate decays pairs

for implementing method 3:

B0
d →

⎧⎪⎨
⎪⎩
D

0
K0

S,L [IIS]

D0K0
S,L [IIS]

,

⎧⎪⎨
⎪⎩
D

0
ρ0 [IIF , IVF ]

D0ρ0 [IID, IVD]
,

⎧⎪⎨
⎪⎩
D

0
J/ψ [IVF ]

D0J/ψ [IVD]
,

B0
s →

⎧⎪⎨
⎪⎩
D

0
φ [IIS]

D0φ [IIS]
,

⎧⎪⎨
⎪⎩
D

0
K0

S,L [IIF ]

D0K0
S,L [IID]

,

⎧⎪⎨
⎪⎩
D

0
J/ψ [IVS ]

D0J/ψ [IVS ]
.

(33)

In each example the lower decay depends on the weak phase −φub. The type-IV W -exchange
graphs (fig. 3) may well be highly suppressed compared to the type-II spectator graphs,
although in view of the easy trigger for J/ψD these modes should be searched for. Among
the eight candidates, B0

d → DK0
S,L and B0

s → Dφ are the best in terms of size of the smaller
branching ratio of the pair, which should be of order 10−5. Since a very intricate time-
dependent analysis is required to extract the full information from method 3, the Bs decays,
for which the mixing parameter xs is expected to be 10 or more, are likely to be less useful
than the Bd decays.

At a hadron collider where only all-charged daughters are used in reconstructing the B0

about 1% of the D0 decays will be useful. Accounting for dilutions due to mixing of the
second B at a hadron collider, some 1010-1011 B’s are needed to implement method 3. At
an e+e− collider, result of comparable statistical precision can likely be had with one order
of magnitude less B’s, but still a rather large number.

5 Method 4: Neutral B-Meson Decays to CP Eigen-

states

The most well-known method for extracting CP -violating phases uses neutral B mesons that
decay to CP eigenstates f . In this case

|f〉 ≡ CP |f〉 = η|f〉 where η =

⎧⎪⎨
⎪⎩

+1 CP (even)

−1 CP (odd)
. (34)

The decay amplitude can be written

A(B0 → f) = |A| e−iφDeiδ, (35)

where δ is a strong-interaction phase, and the weak-interaction phase φD depends on whether
the decay proceeds via a b → c or u transition:

φD =

⎧⎪⎨
⎪⎩
φcb = 0, b→ c

φub, b→ u
. (36)
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Table 1: The 23 basic neutral-B decays to CP eigenstates. The graphs
associated with each decay mode are shown in fig. 3. The subscripts F , S, and
D refer to CKM-favored (amplitude ∝ λ2), -suppressed (∝ λ3), and -doubly-
suppressed (∝ λ4), respectively. The weak-interaction phase φM +φD is shown
in parentheses after each graph type, where φM is the phase due to mixing and
φD is the phase due to b-quark decay. Penguin graphs (V-VII) are included
in classes 1-4 if they lead to the same final state as the nominal graphs for
that class, even though their topology is different. Classes 1a and 4a are pure
penguin graphs. Within each class the modes are ranked roughly in order of
decreasing branching ratio. A final-state π0 could be replaced by an η, ρ0, ω,
etc., and a J/ψ could be replaced by an ηc, χ, ψ′, etc., but final states with
two spin-1 particles must be analyzed according to method 6.

Class B0 b → q Modes Graph(φM + φD)

1 B0
d b → c J/ψK0

S,L IIF (φtd), VIF(φtd)
D+D− IS(φtd), IVS(φtd), VS, VIIS

J/ψπ0 IIS(φtd), VIS

D+
s D

−
s IVS(φtd), VS

φK0
S,L VIF (φtd), VIIF (φtd)

2 B0
d b→ u π+π− IS(φtd + φub), IVS(φtd + φub), VS, VIIS

π0π0 IIS(φtd + φub), IVS(φtd + φub), VS, VIS, VIIS

ρ0K0
S,L IID(φtd + φub), VIF(φtd), VIIF(φtd)

D0D
0

IVS(φtd + φub), VS

K+K− IVS(φtd + φub), VS

3 B0
s b→ u ρ0K0

S,L IIS(φub), VIS(φtd), VIIS(φtd)
K+K− ID(φub), IVD(φub), VF , VIIF

φπ0 IID(φub), VIF

π+π− IVDS(φub), VF ,
π0π0 IVDS(φub), VF ,

4 B0
s b → c D+

s D
−
s IF , IVF , VF , VIIF

J/ψK0
S,L IIS, VIS(φtd)

D0D
0

IVF , IVD(φub), VF , VS

D+D− IVF , VF

K0K
0

VF , VIIF

1a B0
s b → s φK0

S,L VIS(φtd), VIIS(φtd)

4a B0
d b→ u φπ0 VIS

K0K
0

VS, VIIS

12



Following eq. (2) we can write the amplitude for the CP -conjugate process as

A(B
0 → f ) = ηA(B

0 → f) = |A| eiφDeiδ, and hence A(B
0 → f) = η |A| eiφDeiδ, (37)

using eq. (34). Combining eqs. (35-37) with (22) we arrive at the time-dependent decay rates

Γ(B0(t) → f) ∝ |A|2 e−t[1 − η sin(xt) sin2(φM + φD)],

Γ(B
0
(t) → f) ∝ |A|2 e−t[1 + η sin(xt) sin 2(φM + φD)].

(38)

If, as we have assumed, only a single graph contributes to B0 → f , then there is only a single

strong-interaction phase δ in both this and the conjugate reaction B
0 → f . This single phase

does not appear at all in the interference term in eq. (38).
Both φM and φD can take on two values depending on the decay considered, according

to eqs. (23) and (36), so there are four classes of phase angles explored by method 4 as listed
in Table 1. Classes 1, 2 and 3 provide measurements of ϕ1, ϕ2 and ϕ3, respectively, of the
unitarity test. Class-4 decays should show very little CP violation, but not necessarily zero,
as they depend on Vts which has a CP -violating phase at higher order (see eq. (8)). Any
difference in the size of the CP violation between class 1 and class 2, or between class 3 and
class 4 would indicate that the superweak model is not the source of that effect.

The class-1 decay B0
d → J/ψK0

S is particularly easy to trigger on and identify, and may
provide the first evidence for CP violation in the B system. The most prominent class-2 and
-3 decays, B0

d → π+π− and B0
s → ρ0K0

S , respectively, both have smaller branching ratios
and in particular it may prove elusive to measure ϕ3 with B0

s → ρ0K0
S .

Another potential difficulty is that with the exception of B0
d → J/ψK0

S , all other decays
to CP eigenstates have admixtures of penguin diagrams with different weak phases than the
dominant tree diagram [35]. Hence it is useful to have other procedures than method 4 to
measure ϕ2 and ϕ3.

6 Method 5: B Decays to Sets of Final States Related

by Isospin

In Table 1 we see that the decay B0
d → π+π− that can be used to determine ϕ2 has contribu-

tions both from spectator diagrams and penguin diagrams. However, the penguin diagrams
have no weak phase [35] in this case, and to the extent that they are significant, the mea-
surement of ϕ2 is compromised.

By measurement of the related decays B+
u → π+π0, B0

d → π+π−, π0π0, the weak phase
ϕ2 can be isolated from the strong phase of the penguin diagram (which latter phase is not
determined). The separation is aided by the fact that the spin-0 ππ final states can only be
in isospin I = 0 or 2 states due to Bose statistics, and by the result that the penguin graphs
can only lead to the I = 0 states [36].
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The exchange-symmetric ππ isospin states of interest are

√
1
2
(|π+π0〉 + |π0π+〉) = |2, 1〉,√

1
2
(|π+π−〉 + |π−π+〉) =

√
1
3
|2, 0〉 +

√
2
3
|0, 0〉,

|π0π0〉 =
√

2
3
|2, 0〉 −

√
1
3
|0, 0〉,√

1
2
(|π−π0〉 + |π0π−〉) = |2,−1〉,

(39)

via the relevant Clebsch-Gordon coefficients. The decays of a B0
d = |1

2
,−1

2
〉 or B+

u = |1
2
, 1

2
〉

to these states involve ΔI3 = 1
2

which can occur via either ΔI = 1
2

or 3
2

transitions. We use
the ‘spurion’ notation to write the weak Hamiltonian for these transitions as

Hweak = H1/2|12 , 1
2
〉 +H3/2|32 , 1

2
〉. (40)

Then the ππ isospin states obtained in the B decays are

H1/2|12 , 1
2
〉|B0

d〉 =
√

1
2
H1/2|1, 0〉 +

√
1
2
H1/2|0, 0〉,

H3/2|32 , 1
2
〉|B0

d〉 =
√

1
2
H3/2|2, 0〉 +

√
1
2
H3/2|0, 0〉,

H1/2|12 , 1
2
〉|B+

u 〉 = H1/2|1, 1〉,
H3/2|32 , 1

2
〉|B+

u 〉 =
√

3
4
H3/2|2, 1〉 −

√
1
4
H3/2|1, 1〉.

(41)

The transition amplitudes are then

A(B0
d → π+π−) ≡ A+− =

√
1
6
〈ππ, I = 2|H3/2|B〉+

√
1
3
〈ππ, I = 0|H1/2|B〉,

A(B0
d → π0π0) ≡ A00 =

√
1
3
〈ππ, I = 2|H3/2|B〉 −

√
1
6
〈ππ, I = 0|H1/2|B〉,

A(B+
u → π+π0) ≡ A+0 =

√
3
4
〈ππ, I = 2|H3/2|B〉.

(42)

Following ref. [20] we define

A2 ≡
√

1
12〈ππ, I = 2|H3/2|B〉, and A2 ≡ −

√
1
6〈ππ, I = 0|H1/2|B〉, (43)

so we can write the three B-decay amplitudes (and the corresponding three B amplitudes)
as

A+0 = 3A2, A
−0

= 3A2,

A+− =
√

2(A2 − A0), A
+−

=
√

2(A2 − A0),

A00 = 2A2 + A0, A
00

= 2A2 + A0.

(44)

Thus the six decay amplitudes are related by the two constraints

√
1
2
A+− + A00 = A+0,

√
1
2
A

+−
+ A

00
= A

−0
. (45)
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As isospin amplitudes A2 and A2 contain only spectator graphs their phase structure can
be written

A2 = |A2| eiφ2 = |A2| e−iφubeiδ2, A2 = |A2| eiφ2 = |A2| eiφubeiδ2, (46)

noting that the spectator graphs for A2 involve a b → u transition, and defining δ2 as the
strong-interaction phase of the isospin-2 spectator graph. The amplitudes A0 (later written

|A0| eiφ0) and A0 (=
∣∣∣A0

∣∣∣ eiφ0) contain both spectator and penguin graphs, but it will not be
possible to separate these amplitudes in this analysis, so we do not write the equivalent of
eq. (46) for them.

The decay rates are

Γ(B+ → π+π0) = Γ(B− → π−π0) ∝ |A2|2 ,
Γ(B0(t) → π+π−) ∝ e−t[K+− − C+− cos(xt) − S+− sin(xt)],

Γ(B
0
(t) → π+π−) ∝ e−t[K+− + C+− cos(xt) + S+− sin(xt)],

Γ(B0(t) → π0π0) ∝ e−t[K00 − C00 cos(xt)− S00 sin(xt)],

Γ(B
0
(t) → π0π0) ∝ e−t[K00 + C00 cos(xt) + S00 sin(xt)],

(47)

using eq. (22) and defining

K+− = (
∣∣∣A+−∣∣∣2 + |A+−|2)/2,

C+− = (
∣∣∣A+−∣∣∣2 − |A+−|2)/2,

S+− = Im(A∗+−e2iφtdA
+−

)

= 2 |A2|2 Im
[
e2i(φtd+φub)

(
1 − |A0|

|A2|e
i(φ2−φ0)

) (
1 − |A0|

|A2| e
−i(φ2−φ0)

)]
,

K00 = (
∣∣∣A00

∣∣∣2 + |A00|2)/2,
C00 = (

∣∣∣A00
∣∣∣2 − |A00|2)/2,

S00 = Im(A∗00e2iφtdA
00

)

= 4 |A2|2 Im
[
e2i(φtd+φub)

(
1 + 1

2
|A0|
|A2|e

i(φ2−φ0)
) (

1 + 1
2

|A0|
|A2| e

−i(φ2−φ0)

)]
,

(48)

where we have used eqs. (44) in obtaining the second forms for the coefficients S.
Assuming the Fourier analysis of the time-dependent neutral B-decays rates (47) can

be performed, the coefficients K and C determine the magnitudes |A+−|,
∣∣∣A+−∣∣∣, |A00| and∣∣∣A00

∣∣∣. From Γ(B± → π±π0) we know |A+0| =
∣∣∣A−0

∣∣∣ = |A2|. Thus the magnitudes of all

six quantities in the constraint equations (45) are known. Interpreting these constraints
as triangles in the complex plane as shown in fig. 2, we can calculate the phase differences∣∣∣φ2 − φ+−∣∣∣,

∣∣∣φ2 − φ00
∣∣∣,

∣∣∣φ2 − φ
+−∣∣∣ and

∣∣∣φ2 − φ
00

∣∣∣ using the cosine law. Then using the second

(or third) of eqs. (44) we can calculate |A0|, |φ2 − φ0|,
∣∣∣A0

∣∣∣ and
∣∣∣φ2 − φ0

∣∣∣.
Thus we know the magnitudes of all quantities appearing in the expressions for S+− and

S00, but there remains a fourfold ambiguity as to the phase, since only the absolute values
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Figure 2: Temp

of φ2 − φ0 and φ2 − φ0 have been determined. Therefore we can obtain two sets of four
solutions for sin 2(φtd + φub) = sin 2ϕ2. The true solution should be the only common value
in both sets. In principle this method removes the uncertainty in the measurement of ϕ2

due to penguin graphs.
In practice method 5 will be difficult to implement. The spectator graph for B0

d → π0π0 is
type-II, color-suppressed so the branching ratio may well be an order of magnitude smaller
than that for B0

d → π+π−. As method 5 depends heavily on reconstruction of B decays
with final-state π0’s for which no secondary-vertex information will be available, it may be
impossible to implement it at a hadron collider and it will be experimentally challenging at
an e+e− collider. Searches for other final states than ππ for use with the isospin method
have, however, not yielded any better candidate thus far [21, 22, 23].

7 Method 6: Angular Analysis of B Decays to Mix-

tures of CP Eigenstates

When applying method 4 to neutral B-mesons decays to CP eigenstates we cannot immedi-
ately use self-conjugate final states that consist of a pair of vector mesons (such as D�D

�
),

or of three or more mesons (such as J/ψK0
Sπ

0). Depending on whether the orbital angular
momentum is even or odd the CP of the final state changes sign. If we know the fraction p
of decays to the CP (even) final state we can write eq. (38) as

Γ(B0(t) → f) ∝ |A|2 e−t[1 + (1 − 2p) sin(xt) sin 2(φM + φD)],

Γ(B
0
(t) → f) ∝ |A|2 e−t[1 − (1 − 2p) sin(xt) sin 2(φM + φD)],

(49)

and a measurement of sin 2(φM + φD) can be made subject to the dilution factor 1 − 2p.
The fraction p can in general be determined by analysis of the angular distribution of the
sequential decays of the final-state mesons, as discussed in detail in ref. [28] and references
therein. Such an angular analysis will require sizable event samples, perhaps an order of
magnitude larger than needed for method 4.
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A simplified angular analysis will suffice if the final state consists of a vector meson
plus two spinless mesons. When all three mesons are self conjugate (such as J/ψK0

Sπ
0),

helicity-zero decays have definite CP and their abundance determined from a single angular
distribution [27]. When the spin-0 mesons come from the decay of a spin-1 meson, and the
two spin-1 mesons are each self conjugate (such as D�0ρ0 or J/ψφ), or the two vector mesons
are antiparticles (such as D�+D�−) the so-called transversity analysis can be used to extract
p [28].

Referring to Table 1 we see that the most interesting candidates for angular analysis are
the decays B0

d → J/ψK0
Sπ

0 and D�+D�− from class 1, B0
d → ρ+ρ− and ρ0ρ0 from class 2,

B0
s → ρ0K0

Sπ
0 from class 3, and B0

s → D�+
s D�−

s and J/ψφ from class 4. It is notable that
most of these decays require photon detection.

8 Appendix: Nonleptonic Decay Modes of the B Mesons

A survey of seven possible graphs describing B-meson decay indicates that the Bu will have
21 basic 2-body nonleptonic decays, the Bd will have 27, the Bs will have 29, and the Bc will
have 21 (see Tables 2-5). This contrasts with the case for the Ku (= K+) and Kd (= K0)
which each only have 2 such decays (not all distinct!). In the B system there are 24 basic
decays to CP eigenstates compared to the 2 in the K system. All 98 of the basic two-
body decays of the B-meson system have all-charged final states (at some price in secondary
branching fraction), while only 1 of the basic K decays is all charged.

We have not displayed the catalog of decays of the B+
c (= bc), in which the charm quark

decays before the b-quark, as is expected to happen in the majority of decays. Both the Bs

and the Bc will be better studied at a hadron collider than at a low-energy e+e− collider.
The Tables refer to seven kinds of graphs, two spectator, annihilation, exchange, pen-

guin/annihilation, and two penguin/spectator, as shown in Fig. 3. We can roughly estimate
that for spectator graphs I:

CKM-favored decays have amplitudes ∝ λ2, and branching fractions of 10−2-10−3;
CKM-suppressed decays have amplitudes ∝ λ3, and branching fractions of 3 × 10−4-

3 × 10−5;
CKM-doubly-suppressed decays have amplitudes ∝ λ4, and branching fractions of 10−5-

10−6.
Graphs II, III and IV are ‘color suppressed’ in that only 1/3 of the quark pairs created by
the W or gluons will have the proper color to match the other final-state quark pair, and so
the rates are typically suppressed by a factor of 1/10 compared to graph I at the same order
in λ.

The annihilation graph III and the exchange graph IV are controversial and both amy
be heavily suppressed.

Graphs V-VII are ‘penguins,’ which have yet to be observed in the laboratory. This
suggests that they are suppressed by a factor of order 0.01 compared to graphs I and II at
the same order in λ. Graphs V and VII are color-suppressed compared to graph VI. The
weak phase of the amplitude for a penguin graph is φtd if the transition is b → d (CKM
suppressed), and 1 for b → s, as discussed by London and Peccei [35].

The two-body final states listed in the Tables are representative of the particular qq̄/qq̄
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Figure 3: Seven graphs for the nonleptonic decays of B mesons.

combination for each entry. All final states could be augmented by n(π+π−), with possibly
larger branching fractions. Likewise, every spin-0 final-state particle could be replaced by
its spin-1 partner, and vice versa. Typically the branch to the spin-1 meson will be 3 times
that to the spin-0 partner.

The secondary decays used in constructing the last column of the Tables are:

Decay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branching Ratio

K0
S → π+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.69

ρ0 → π+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00
K�0 → K+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.67
φ→ K+K− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.50
D+ → K−π+π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.08
D0 → K−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.04
D+

s → φπ+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03
D+

s → φπ+π+π− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.04
J/ψ → e+e− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.07

For completeness will list the basic two-body nonleptonic decays of the D+, D+
s , and D0

mesons in Tables 6-8.
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Table 2: The 21 basic 2-body nonleptonic decays of the B+
u (= bu). Figure 3 illustrates the

seven types of graphs. The subscripts F , S, and D to the type of graph in this and following
three tables refer to CKM-favored (ampli ∝ λ2), -suppressed (ampli ∝ λ3), and -doubly-
suppressed (ampli ∝ λ4), respectively. If the decay amplitude depends on a CP -violating
phase, the relevant phase of a CKM matrix element is indicated in parentheses. The decay
modes are listed roughly in order of decreasing branching fraction.

Graph Final Final All-Charged
Quarks State Daughters

IF , IIF uc/ud D
0
π+ K+π−π+

IF , IIID(φub), VIIF cs/uc D+
s D

0
K+K−π+K+π−

IIF , VIF cc/us J/ψK+ e+e−K+

IS cs/uu D+
s ρ

0 K+K−π+π+π−

IS, IIS uc/us D
0
K+ K+π−K+

IS, IIIS(φub), VIIS(φtd) cd/uc D+D
0

K−π+π+K+π−

IS(φub), IIS(φub), IIIS(φub), VIF , VIIF uu/ud ρ0π+ π+π−π+

IIS, VIS(φtd) cc/ud J/ψπ+ e+e−π+

IIS(φub), IIIS(φub) cu/us D0K+ K−π+K+

ID(φub), IID(φub), IIID(φub), VIF , VIIF uu/us ρ0K+ π+π−K+

ID(φub), IIID(φub) cd/uu D+ρ0 K−π+π+π+π−

IID(φub), IIID(φub) cu/ud D0π+ K−π+π+

IIIS(φub), VIIS(φtd) us/sd K+K
�0

K+K−π+

IIIS(φub) cd/ds D+K�0 K−π+π+K+π−

IIIS(φub) cs/ss D+
s φ K+K−π+K+K−

IIIS(φub) cc/cs J/ψD+
s e+e−K+K−π+

IIID(φub), VIIF ds/ud K�0π+ K+π−π+

IIID(φub), VIF , VIIF ss/us φK+ K+K−K+

IIID(φub) cs/sd D+
s K

�0
K+K−π+K−π+

IIID(φub) cc/cd J/ψD+ e+e−K−π+π+

VIS(φtd) ss/ud φπ+ K+K−π+
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Table 3: The 27 basic 2-body nonleptonic decays of the B0
d (= bd). The numbers in the

‘CP Eigenstate’ column refer to the classification described in sec. 1.3 regarding the relevant
CKM phases governing the decay asymmetries. Graphs leading to CP eigenstates includes
a phase factor in φtd due to mixing. However, in penguin graphs with b → d transitions to
CP eigenstates, the two phase factors in φtd cancel.

Graph Final Final CP All-Charged
Quarks State Eigenstate Daughters

IF , IVF dc/ud D−π+ K+π−π−π+

IF , VIIF cs/dc D+
s D

− K+K−π+K+π−π−

IIF , IVF uc/dd D
0
ρ0 K+π−π+π−

IIF (φtd), VIF(φtd) cc/ds J/ψK0
S 1 e+e−π+π−

IS dc/us D−K+ K+π−π−K+

IS(φtd), IVS(φtd), VS, VIIS cd/dc D+D− 1, 4 K−π+π+K+π−π−

IS(φtd + φub), IVS(φtd + φub), VS, VIIS ud/du π+π− 2, 4 π+π−

IS(φub) cs/du D+
s π

− K+K−π+π−

IIS uc/ds D
0
K�0 K+π−K+π−

IIS(φub) cu/ds D0K�0 K−π+K+π−

IIS(φtd), VIS cc/dd J/ψρ0 1, 4 e+e−π+π−

IIS(φtd + φub), IVS(φtd + φub), VS, VIS, VIIS uu/dd ρ0ρ0 2, 4 π+π−π+π−

ID(φub), VIIF us/du K+π− K+π−

ID(φub), IVD(φub) cd/du D+π− K−π+π+π−

IID(φtd + φub), VIF(φtd), VIIF(φtd) uu/ds ρ0K0
S 2, 1 π+π−π+π−

IID(φub), IVD(φub) cu/dd D0ρ0 K−π+π+π−

IVF sc/us D−
s K

+ K+K−π−K+

IVF cc/uc J/ψD
0

e+e−K+π−

IVS(φtd + φub), VS cu/uc D0D
0

2, 4 K−π+K+π−

IVS(φtd), VS cs/sc D+
s D

−
s 1, 4 K+K−π+K+K−π−

IVS(φtd + φub), VS us/su K+K− 2, 4 K+K−

IVD(φub) cs/su D+
s K

− K+K−π+K−

IVD(φub) cc/cu J/ψD0 e+e−K−π+

VIF (φtd), VIIF (φtd) ss/ds φK0
S 1 K+K−π+π−

VS ss/ss φφ 4 K+K−K+K−

VIS ss/dd φρ0 4 K+K−π+π−

VS, VIIS sd/ds K
�0
K�0 4 K−π+K+π−
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Table 4: The 29 basic 2-body nonleptonic decays of the B0
s (= bs).

Graph Final Final CP All-Charged
Quarks State Eigenstate Daughters

IF sc/ud D−
s π

+ K+K−π−π+

IF , IVF , VF , VIIF cs/sc D+
s D

−
s 4 K+K−π+K+K−π−

IIF uc/sd D
0
K

�0
K+π−K−π+

IIF , VIF cc/ss J/ψφ 4 e+e−K+K−

IS, IVS sc/us D−
s K

+ K+K−π−K+

IS, VIIS(φtd) sc/cd D−
s D

+ K+K−π−K−π+π+

IS, VIIS(φtd) su/ud K−π+ K−π+

IS(φub), IVS(φub) cs/su D+
s K

− K+K−π+K−

IIS uc/ss D
0
φ K+π−K+K−

IIS(φub) cu/ss D0φ K−π+K+K−

IIS, VIS(φtd) cc/sd J/ψK0
S 4, 1 e+e−π+π−

IIS(φub), VIS(φtd), VIIS(φtd) uu/sd ρ0K0
S 3, 1 π+π−π+π−

ID(φub), IVD(φub), VF , VIIF us/su K+K− 3, 4 K+K−

ID(φub) cd/su D+K− K−π+π+K−

IID(φub), VIF ss/uu φρ0 3, 4 K+K−π+π−

IID(φub) cu/sd D0K
�0

K−π+K−π+

IVF , IVD(φub) VF , VS cu/uc D0D
0

4, 3 K−π+K+π−

IVF , VF cd/dc D+D− 4 K−π+π+K+π−π−

IVS dc/ud D−π+ K+π−π−π+

IVS uc/uu D
0
ρ0 K+π−π+π−

IVS cc/uc J/ψD
0

e+e−K+π−

IVS(φub) cd/du D+π− K−π+π+π−

IVS(φub) cu/uu D0ρ0 K−π+π+π−

IVS(φub) cc/cu J/ψD0 e+e−K−π+

IVD(φub), VF ud/du π+π− 3, 4 π+π−

IVD(φub), VF uu/uu ρ0ρ0 3, 4 π+π−π+π−

VF , VIIF ss/ss φφ 4 K+K−K+K−

VF , VIIF ds/sd K�0K
�0

4 K+π−K−π+−
VIS(φtd), VIIS(φtd) ss/sd φK0

S 1 K+K−π+π−
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Table 5: The 21 basic 2-body nonleptonic decays of the B+
c (= bc) in which the b-quark

decays before the c quark.

Graph Final Final All-Charged
Quarks State Daughters

IF cc/ud J/ψπ+ e+e−π+

IF , IIF , IIIF , VIF , VIIF cc/cs J/ψD+
s e+e−K+K−π+

IIF , IIIF cd/uc D+D
0

K−π+π+K+π−

IS cc/us J/ψK+ e+e−K+

IS, IIS, IIIS, VIS(φtd), VIIS(φtd) cc/cd J/ψD+ e+e−K−π+π+

IS(φub), IIIS, VIIS(φtd) cu/ud D0π+ K−π+π+

IS(φub), IIS(φub) cs/cu D+
s D

0 K+K−π+K−π+

IIS, IIIS cs/uc D+
s D

0
K+π−K+K−π+

IIS(φub), IIIS, VIS(φtd), VIIS(φtd) cd/uu D+ρ0 π+π−K−π+π+

ID(φub), IIIF , VIIF cu/us D0K+ K−π+K+

ID(φub), IID(φub) cd/cu D+D0 K−π+π+K−π+

IID(φub), VIF cs/uu D+
s ρ

0 K+K−π+π+π−

IIIF uu/ud ρ0π+ π+π−π+

IIIF us/sd K+K0
S K+π+π−

IIIF , VIIF cd/ds D+K0
S K−π+π+π+π−

IIIF , VIF , VIIF cs/ss D+
s φ K+K−π+K+K−

IIIS uu/us ρ0K+ π+π−K+

IIIS ds/ud K0
Sπ

+ π+π−π+

IIIS ss/us φK+ K+K−K+

IIIS, VIIS(φtd) cs/sd D+
s K

0
S K+K−π+π+π−

VIS(φtd) cd/ss D+φ K−π+π+K+K−

Table 6: The 7 basic 2-body nonleptonic decays of the D+ (= cd). In this and the following
two tables penguin contributions are ignored.

Graph Final Final All-Charged
Quarks State Daughters

IF , IIF sd/ud K
�0
π+ K−π+π+

IS, IIIS sd/us K
�0
K+ K−π+K+

IS, IIS, IIIS dd/ud ρ0π+ π+π−π+

IIS ss/ud φπ+ K+K−π+

ID, IIID dd/us ρ0K+ π+π−K+

IID, IIID ds/ud K�0π+ K+π−π+

IIID ss/us φK+ K+K−K+
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Table 7: The 6 basic 2-body nonleptonic decays of the D+
s (= cs).

Graph Final Final All-Charged
Quarks State Daughters

IF ss/ud φπ+ K+K−π+

IIF , IIIF sd/us K
�0
K+ K−π+K+

IS, IIS, IIIS ss/us φK+ K+K−K+

IS, IIIS ds/ud K�0π+ K+π−π+

IIS, IIIS dd/us ρ0K+ π+π−K+

IIIF uu/ud ρ0π+ π+π−π+

Table 8: The 11 basic 2-body nonleptonic decays of the D0 (= cu).

Graph Final Final All-Charged
Quarks State Daughters

IF , IVF su/ud K−π+ K−π+

IIF ss/uu φρ0 K+K−π+π−

IS, IVS ud/du π+π− π+π−

IS, IVS us/su K+K− K+K−

IIS, IVS sd/uu K
�0
ρ0 K−π+π+π−

IIS, IVS ds/uu K�0ρ0 K+π−π+π−

IIS, IVS du/ud ρ0ρ0 π+π−π+π−

ID, IVD us/du K+π− K+π−

IVF ss/sd φK
�0

K+K−K−π+

IVS ds/sd K�0K
�0

K+π−K−π+

IVD ss/ds φK�0 K+K−K+π−
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