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QUANTUA PROCESSES IN THE FIELD OF A CIRCULARLY POLARIZED ELECTROMAG -
NOTIC WAVE

N. B. NAROZUNYT, A. 1. RIKISHOV, and V. L'RITUS
P. N. Lebedev Physics Institute, Academy of Scicnces, USS.R.

Submitled to JETP editor March 2, 1964
S PROlanS NON LINVEARL

LL"L‘L\\\\\\ //2 | scz::::rjw

The probability of emission of a photon by an
electron evaluated per unit volume per unit time
turns out to be equal to 2

, __etm*n = du  r2- R u?
W) =g, 2 ) (1+u)={ wrer+2(247)

X (T2 T —217) ),
u = (kk’)/(kq"}, u,=—2s(kq)/m.}=2sy/x(1+ %),

2= (22 Y1 ¥ 2/7) Vi(ua— 1). (9)

This probability, as well as the probability for a
linearly polarized wave, depends on two invariants
which we have chosen in the form

Y] = z=-calm, x=—z(kp)|m?= e} (Fupv)*/m?

where Fy, is the amplitude of the intensity of the
field. '
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Figure 4. a) The trajectories of an electron-posiiron pair created with threshold
energy in a strong wave field. The orbits are the circles discussed in section 2-1a; b) The

trajectories for pair creation above threshold. The orbits are trochoids.
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~ Photon Splitting in a Plane-Wave Field

Tan Afeck ™ and Leonid Kruglyak ®

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
(Received 19 Junc 1987)

An experiment has recently been proposed 1o measurc the splitting of a photon into two photons in an
intense plane-wave field. Coherent absorption and emission of several plane-wave photons may play an
important role at these high intensities. We make an approximate calculation of these nonlinear effects
which shows that they become impaortant at intensities of 2 10*? ¥/cm, about twice Lhe inlensity in the

proposed experiment.

PACS numbers 12.20.Ds

Recent proposals for experimental studies of nonlinear
quanizm electrodynamics have created a need for
theoretical catculations of noniinear QED effects and
have pointed out a lack of such calculations in the exist-
ing literature.’ The experiments proposed for the Stan-
ford Linear Collider (SLC) would bring high-cnergy
electrons and pholons into collision with a high-intensity
laser beam. One of the effects thal may be detectabie is
“photon-spiitting” in which an external high-energy pho-
ton enters the beam and two high-energy photons leave
it. This process is accompanied by the coherent absorp-
tion and emission of some number of laser photons. The
fowest-order process, involving the absorption’of a single
laser photon, is the “ordinary™ elastic scattering of light
by light. The amplitude is given by the box diagram of
Fig. | and was calculated by Karplus and Neuman? and
by de Tolis.2? This process has never been obscrved ex-

e

b4

A\

FIG. t. Lowesl-order light-by-light scattering process.

perimentzlly.

Obtaining a high enough flux for the rate due to this
process lo be signiftcant requires such an intense beam
that multiple-photon processes become important. The
exact calculation {up to O{a) corrections] can be formu-
lated in terms of the electron propagalor in 2 plane-wave
field. The gruph is shown in Fig. 2 and involves three
external photon lines and three plane-wave field propaga-
tors. It is natural to regard this as a photon “decay”
process. [t is kinemaltically possible for the photon to de-
cay because encrgy and momentum are only conserved
modulo sk, in the background field, where k; is the
taser-photon four-momenturp and r is an integer. Ex-
panding the propagators in laser-photon lines gives a
sumn of ordinary Fevnman diagrams. The rate contatns a
sum of terms with different numbers of rer absorbed
laser photons (number absorbed minus number emitted).

FIG. 2. Photon-splitting diagram. Heavy lines represent the
exactl electron propiagaltor in a planc-wave field.

© 1987 The American Physical Sociely 1065
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ON POLARIZATION AND SPIN EFFECTS IN THE THEORY
OF SYNCHROTRON RADIATION

A. A. BokolovandI. M. Ternov

For dmes t > r the ratio ny/n, tends to the limiting

value
mo_ 1548y3
n T 45_8YV3 (1%

independently of the initial distribution of electron spin
states along the field. From (18) it is clear that in this
limiting case approximately 95% of the electron spins
must become turned against the field, if we neglect
other factors capable of inverting electron forces.

Nuciesr Physics B212 (19¢3) 131-150
© North-Hodland Publishiag Company

CERN, Genrea, Switraviand
Ressived 16 Angust 1982
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THE HAWKING-UNRUH TEMPERATURE
AND QUANTUM FLUCTUATIONS IN PARTICLE ACCELERATORS

K. T. McDonald
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

We wish to draw atiention to a novel view of the effect
of the quanptum fluctuations during the radiation of accel-
erated particles, particularly those in storage rings. This
view is inspired by the remarkable insight of Hawking!
that the effect of the strong gravitational field of a black
hole on the quantum fluctuations of the surtounding space
is to cause the black hole to radiate with a temperature

hg
2wck’

where g is the acceleration due to gravity st the surface
of the black hole, ¢ is the speed of light, and & is Boltz-
mann's constant. Shortly thereafter Unruh? srgued that
an accelerated observer should become excited by quan-
tum fluctuations to a temperature

ha*

T Omek’

where a” is the acceleration of the observer in its instan-
taneous rest frame. In a series of papers Bell and co-
workers®~® have noted that electron storage rings provide
a demonstration of the utility of the Hawking-Unruh tem-
perature, with emphasis on the question of the ircomplete
polarization of the efecirons due to quantum fluctuations
of synchrotron radiation.

Here we expand slightly on the results of Bell ef al., and
encourage Lhe reader to consult the literature for more
detailed understanding.

Applicability of the Idea

When an accelerated charge radiates, the discrete en-
ergy and momentum of the radiated photons induce flne-
tuations on the motion of the charge. The insight of Un-
ruh is that for uniform lincar acceleration (in the absense
of the fluctuations), the fluctuations would excite any in-
ternal degrees of freedom of the charge to the temperature
stated above. His argument is very general {i.e., thermo-
dynamic) in that it does not depend on the details of the
accelerating force, nor of the nature of the accelerated
particle. The idea of an effective temperature is strictly
applicable only for uniform linear aceeicration, but should
be approximately correct for other accelerations, such as
that due Lo uniform cireular motion,

A charged particle whose motion is confined by the fo-
cusing system of a particle accelerator exhibits transverse
and longitudinal osciilations about its ideal path. These
oscillations are excited by the quantum fluctuations of the
particie’s radiation, and thus provide an excellent physi-
cal example of the viewpoint of Unruh.

Further, the particles take on a thermal distribution of
energies when viewed in the average rest frame of a bunch,
‘which transforms to the observed energy spread in the
laboratory. While classical synchrotron radiation would
eventually polarize the spin-i particles completely. the
thermal fluctuations oppose this, reducing the maximum
beam polarization.

Submitted to the 1987 Particle Aveelerator Conference

[t is suggestive to compare the excitation energy U” =
kT, as would be observed in the pariicle’s rest frame,
1o the rest energy me? when the acceleration is due to
laboratory electromagnetic fields E and B. Noting that
a®” = eE*/m we find

(Ey +7(EL +B8B.)]
2"""15?(31'!

U* heE"
me2 | Zamicd

where the particle’s laboratory momentum is yfme, and

For an electron,
Eeric = 1.3 x 10" volts/em = 4.4 x 10" ganss.

(Ecrir is the feld strength at which spontaneous pair pro-
duction becomes highly probable, i.e., the field whose
valtage drop across a Compton wavelength is the parti-
cle's rest energy.) We might expect that the fluctuations
become noticeable when U* ~ 0.1 eV, and hence compa-
rable Lo any other thermal effects in the system, such as
the particle-source temperature.

For linear accelerators £; ~ 10°% volts/em al best, so
U < 107% eV. The effect of quantum flucluations is of
course negligible because the radiation itself is of little
importance in a linear accelerator.

For an eleclron storage ring such as LEP, v ~ 105,
and B) ~ 10% gauss, so that U* ~ 0.2 eV. For the SSC
proton storage ring, v ~ 2 x 10*, while B, ~ 6 x 107
gauss, 5o that [/™ ~ 2 eV. Asis well known, in essentially
all electron storage rings, and in future proton rings, the
effect of quantum fuctuations is quite important.

The remaining discussion is restricted to beams in stor-
age rings {= transverse particle accelerators).

Beam-Energy Spread

An hmmediate application of the excitation energy U is
to the beam-energy spread. In the average rest frame of a
bunch of patlicles, the distribution of energies is approx-
imately thermal, with characleristic kinetic energy U~
and momentym p* = v/2mU*. The spread in laboratory
energies is then given by

. A
b = y(me® + U 2 Bprc)=Ug f 1L~ € ,
\ o

where Uy = 4mc® is the nominal beam gnergy, p =

UnfeB, is the radius of curvature of the central orbit,
and Ac = h/mc is the Compton wavelength. Writing

this as .
(6[.’ ) TS PN
Ue/ = wp !
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