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Executive Summary

The need for massive computing at the SSC is well established. A critical de-
sign feature is the ability to inject data at high rates into several-thousand-parallel
compute-nodes. This is the main design characteristic of the Intel-MESH architec-
ture. We have been working with Intel towards a machine that meets the needs of
a high rate detector at the SSC. In the last year we have completed the following
tasks:

e Major portions of the CERN Program Library including GEANT, as well as
ISAJET, PYTHIA, and JETSET have been ported to the Intel iPSC/860 Hy-
percube. We have provided CERN with these modifications.

o A parallel processor with 4 i860-nodes and 3 I/O-nodes, configured as a hyper-
cube, has been purchased and used extensively.

e Simulations of hypercube 1/0O properties have been completed using Verilog,

o Demonstration of a large class of random-number multipliers completed. We
note CERN RANTF fails Knuth’s criteria for the spectral test.

o Software is written that implements a parallel-tracking trigger for the 55C.

o We are preparing to use the Caltech Consortium MESH machine (512 i860
nodes with 40 MBytes/sec between nodes).

We propose to demonstrate the data-injection capabilities of the Intel-MESH
architecture. We request funding of $312K for purchase of a prototype MESH and
to conduct research in FY92 with the following major goals:

¢ Continue a joint-project with Intel to incorporate a FAST-1/0-Board into the
Intel-MESH simulation package—Hypersim.

e Demonstrate injection-rate of the MESH using the FAST-1/0-Board.
o Measure time to build events vs. injection-rate on the MESIH.

o Measure Level-3 trigger rejection times with concurrent algorithms running on

the MESH.

¢ Continue o develop a version of ISAJET and GEANT that executes simultane-
ously on multiple-nodes.
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1 Introduction

The SSC detector CPU computing needs exceed that available from industry today[1].
In addition, the I/O requirements at the SSC may be as high as 10! Bytes/sec into
the computer farm. For these reasons, massively-parallel-computing architectures
have become the subject of study by us and others in the High Energy Physics
community[2, 3, 4, 5, 6, 7, 8). In this proposal, we concentrate on the Intel iPSC/860
based Hypercube architecture and the subsequent machine, the Intel MESH[9]. The
Hypercube is a very successful architecture and has been popular in scientific applica-
tions over the last several years. However, the number of processor nodes is limited to
128. Future applications at the SSC will require several thousand processing nodes,
up to 10° VAX MIPS equivalent.

A computer with a new architecture, developed by Intel Scientific Computers
Inc., called a 2-D MESIH, has been delivered to the Caltech Consortium this last
summer[10]. It contains 512 i860 processor nodes with an internode bandwidth of
about 40 MBytes/sec. The MESH machine at Caltech is a prototype of a commercial
product to be released in 1992 by Intel. This Intel machine will demonstrate capabil-
ities of up to about 2000 nodes with internode handswidths of about 200 MBytes/sec.

The general goal of this proposal has been to demonstrate the trigger capabilities
of RISC processors and the MESH architecture. One of the more challenging areas
is B physics. In order to study C P-violating phenomena, the study of most ol the B
cross section at a lwminosity of 10%2ecm™'sec™ or greater is desirable. After a simple
decision by the Level 1-2 trigger which is built in custom hardware, we attempt to
demonstrate that the remaining ~ 10° events/sec can be injected into the MESH
network and the events built, The MESH network is suited for both the high-rate
data-injection and the high bandwidth internode communication necessary to build
the events. The RISC processors must be powerful enough to validate the event as
interesting. We are studying concurrent trigger algorithms within the context of the
Intel MESH as a further possibility of enhancing the trigger rejection efficiency.

2 Description of Hypercube at Pennsylvania

We have purchased a seven node iPSC/860 machine containing four compute nodes
(RX) and three I/O nodes. Each RX node contains a 40 MHz i860 processor with 16
MB (expandable to 64 MB) of main memory. The RX nodes also contain a Direct
Clonnect Module (DCM) daughter board. The DCM allows the node to communicate
with other nodes over the backplane.

The 1860 contains a RISC engine, two floating point units and a graphics ac-
celerator. It implements superscalar parallelism and has been measured by Intel to
have 80 single precision MFLOPs peak, 60 double precision MFLOPS peak, and 33
integer VAX MIPs. It has a 160 MB/sec peak DRAM access rate. The processor
also features a 4 I{hyte instruction cache, an 8 Kbhyte data cache and an on board
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Figure 1: iPSC system configuration

memory management unit.

The DCM has a total of eight channels; seven to connect to other compute nodes
and one to connect to other types of nodes such as an I/O node. The DCM can use
all eight channels simultaneously and achieve data rates up to 2.8 MB [sec on each.

The DCMs define the hardware commuuication configuration, The present sys-
tem is configured into a hypercube. To the programmer, the system appears to be
fully interconnected. This appearance is achieved by the routing algorithm and
the fact the DCM board will offload the communications task [rom the processor of
the intermediate nodes. That is, a node processor is only involved in a communica-
tion cycle if it is the sending or receiving node.

Two of the 1/0O nodes have SCSI ports and connect to five hard disk drives for
a total capacity of 3 GBytes and an 8200 Exabyte Smm tape drive. The third 1/0
node is a service node that connects to a Bus Interface Adapter (BIA) that allows
the user to plug in any 6U VME card. A device driver for the VME card needs to he
written for the service I/O in order to access the card. Currently, an Intel supplied
ethernet card is plugged into the BIA.

Figure 1 summarizes the configuration of the iPSC system.

Most communication and all process control passes through a front end machine,
This front end is called the System Resource Manager (SRM} and currently is a 80386
IBM PC class machine running Intel’s version of System V 3.2 UNIX. Requests {or
node allocations, program loads, ete. get processed by the SRM. This function can
actually be performed on a Sun workstation by setting up and running provided
software that communicates all such requests to the SRM to be performed on the
behalf of the remote user. This requires that the SRM have access to the same
disk where the user’s code is located on the workstation. This is done with the Sun
Network File System {NFS) software.
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Figure 2: iPSC network configuration

All of the compilers and development software runs on Sun platforms as well as
the SRM. This allows for very quick edit — compile — run debugging cycles because
of the speed of the Sun workstations. The fact that all of the iPSC control and
development software runs on Suns means that a user never has to log onto the SRM
at all. At Penn, our workstations and the SRM are served from a central file server.
This easily maintains consistency across the iPSC development machines and the
SRM. Figure 2 shows the network configuration ai Penn.

3 Generators and GEANT - Port to the Hypercube

In anticipation of massively parallel computing becoming available next year we have
ported the majority of CERN physics libraries to the Intel iPSC/860 Hypercube at
the SSCL. ISAJET, JETSET, and PYTHIA have also been ported. The soltware for
the Hypercube and MESH machines are intended to be identical to the user.

Details of the iPSC/860 supercomputer and the i860 microprocessor can be found
elsewhere[9]. A briel description follows.

The Intel iPSC/S60 computer consists of compute and 1/0O nodes. The compute
nodes each contain one Intel i860 RISC processor, between 8 and 64 Megabytes
of memory and communications board (called a Direct Connect Module or DCM)
that allow it to communicate with other nodes. Currently, the version of the i860
processor in the compute nodes runs at a clock rate of 40 MHz. The processor is
superscalar (i.e. it can perform multiple instructions in one clock cycle, ax+b).

Each I/0 node contains one Intel i386 processor, a DCM board and may contain
support for specialized hardware such as a SCSI interface. VME hoards may be
connected into the machine through an adapter to an I/0O node.

We have obtained a small iPSC/860 system to perform the actual code porting
and to test various aspects of the system, including the possibility of using a similar
machine for online, Level 3 triggering. The ethernet card in the machine allows a



process in the farm to communicate with other machines in the network by TCP/IP
protocols via the UUNIX socket mechanism. Support is provided for a variety of nor-
mal UNIX high level protocols including X11 clients. Also provided is a mechanism
for incoming file transfer (ftp) access to the disk in the farm.

Much of the code in the CERN libraries is nonportable. Fortunately, the code
already has been ported to a large number of platiorms so that in most cases there ex-
ists a copy of the code for a machine that is similar to the target system. The changes
that need to be made are usually minor and include, for example, specific syntax for
common FORTRAN extensions such as hexadecimal constants, and changes in the
way that I/O is handled. We are using the Intel Portland Group cross compilers.

3.1 Port of CERNLIB

Version ('NL201 of the CERNLIB libraries was compiled and tested. The UNIX
DECstation version was used as a basis for the port. This code was used as a
starting point because both the processor in the DECstation and the i860 are Little
Endian, both in byte and word order, i.e. the order is such that the least significant
hyte comes first in memory. The word and byte order is a significant difference
because many ol the mathematical routines and bit/byte manipulation routines take
advantage of the byte order to increase their execution speed. Becaunse both machines
use the IEEE floating point formats, we did not encounter and difficulty with real
number formats. By starting with the DECstation code, the port was made much
easier. _

Most of the routines compiled without difficulty. The packages that required mod-
ification were COMIS, COMIST, CSPACK, EURODEC, GCORR, GEN, HBOOK4, HERWIGT,
HIGZX11, KERNGEN, KERNNUM, KUIP, PAW, PAWM, and ZEBRA. The changes required
are itemized helow.

o Error returns in READ and WRITE statements.
Some of these were required because of specific return values from statements.
T addition the compiler would not allow implicit goto’s on error conditions in
the statement.

o Syntax for hexadecimal constants.
The DECstation FORTRAN compiler uses a syntax of the form X’ 1234ABCD’,
whereas the 1860 compiler uses * 1234ABCD’ X. Note that hexadecimal constants
are not part of the ANSI FORTRAN language specification.

e MIPS assembly language.
There are a few routines that have been coded in assembly language for the
DEC machines. We used the (! language versions ol these routines extracted
from the PATCHY deck.



o Usc of double precision.
It was necessary to use double precision in some mathematical voutines in order

for them to return the correct results.

¢ File status information.
The structure returned by the C function stat, differs between the DECstalion
and the iPSC. This is a fundamental difference between SYSV and BSD flavors
of UNIX.

o Timing routines.
The routines that are used to calculate elapsed time were completely rewritten.

¢ System function call.
The system function call does not exist for the iPSC, It was replaced by a
duminy function.

¢ Word size for I/O and EOF file,
The word size for RZ files in ZEBRA and the number that represents LOF
when reading a file differ between the DECstation and the iP5C.

We have run all of the available tests on the packages. Most of the routines
passed without any difficulty. The routines that failed are C206 (Zeros of Complex
Polynomials) in GENT and €308 (Complete Elliptic Integrals K and I) in KERNNUMT.
The test programs EPT3L, EPT11 and EPT3S in EPIO also failed. We are looking into
these problems. We have also run the BCD GEANT simulation [11, 12, 2] (including
graphics output) without any problems.

The FORTRAN compiler has several option switches that enable various opti-
mizations for increased speed. All of the routines were compiled with an option
(~Knoieee) that allowed the compilers to avoid strictly following the IEEIS conven-
tions for floating point arithmetic. The mathematical routines passed the tests and
therefore the results are within the accepted limits. The failure of the two routines
(206 and €308) is not related to the use of this option.

The ANSI FORTRAN specification requires the programmer to explicitly issue
a SAVE statement for the variables to be saved between CALLs to subroutines and
functions. The FORTRAN routines were compiled with the option (~Msave) that
forces the compiler to save the contents of all variables in subroutines and functions
between CALLs. This was necessary because a large number of the routines in the
libraries depend on this feature and assume that the compiler will do it by default.

Our port of the CERN libraries to the iPSC has been transmitted to CERN. Tt
is expected that our code for the iPSC/860 platform will be provided in the next
official release of the libraries as an available platforn:.
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3.2 Port of Monte Carlo Event Generators

A number of frequently used physics generators have been compiled, run, and tested
on the iPSC/860 platform. These generators are ISAJET, JETSET, and PYTHIA.
There were four routines that did not compile due to compiler bugs. These routines
are DECME and EPF in ISAJET, LUDECY in JETSET, and PYRESD in PYTHIA. In all of the
routines except EPF, the compiler complains about an “Unmatched ELSEIF, ELSE
or ENDIF statement,” even though it is not true. The ervor generated by compiling
EPF is “Internal compiler etror. expand: bad ilm.” All fowr of these routines can be
made to compile by avoiding a particular continuation line in the code above the line
that generates the error. This bug has been reported to Intel and we are awaiting
information on its status.

Another problem can be demonstrated with TSAJET. If a user Lries to read in an
existing command deck that contains no spaces as in

PT
1.,20.,1.,20./

the vead statements in READIN will fail and terminate the program. This problem
lias also been observed in a slightly different form on Sun machines. This can be
fixed by inserting the ‘space character’ after commas. We have not yet determined
the correct interpretation of the ANSI FORTRAN specification for this case,

3.3 SSCL Hypercube

The SSCL has purchased a 64-node iPSC/860 Hypercube for beam related studies.
We have used this machine for the majority of the code ported by L. A. Roberts.
We thank George Bourianoff and his group for use of the machine.

3.4 Benchmarks

We have run several henchimarks on one node of the iPSC/860 and compared themn
with several popular UNIX workstations., The results are summarized in Table L.

The first benchmark is the first confidence test for GEANT. The second benchmark
is the BCD GEANT simulation. ISAJET was the event generator that was used for the
detector simulation. The GEANT command deck used was

LIST

KINE 2

CUTS 0.05 0.05 0.06 0.05 0.05

GEOM ’8SVX ’ ’STRA’ ’RICH’ ’TRD ’ ’TOF * ’'ECAL’ ’MUON’ ’MAGN’
BFLD 1

TRIG &

STOP



Note that the amount of [/O performed was minimal.

The third benchmark is determined by running ISAJET version 6.43 with the
TWOJET option. The output data file on the iPSC was sent to the disk internal to
the farm. Had we written to a disk on the front end machine or to an NFS mounted
filesystem on the front end, the performance would be reduced by a factor of two.
The simulation generated bb jets with 1.0 < Pr < 20.0 GeV/c and /s = 2 TeV.

In all cases the times are CPU seconds per event that the program reporled in
its output.

CPU GEXAM1 | BCD GEANT | BCD ISAJET
Sec/Event | Sec/Event | Sec/Event

[BM 11.72 236.89 0.05863

Intel 12.33 204.14 0.09836

Sun 11.40 175.11 0.06938

SGI 6.11 139.34 0.04663

HP 4.01 81.18 —

Table 1: Results of several physics benchmarks. The times quoted are CPU seconds

The configurations used for these benchmarks are

e IBM — IBM RS/6000-320, 16MB, AIX 3.1.5, XL FORTRAN 2.1

e Intel — iPSC/860, 8MB, FORTRAN compiler PGFTN Sund /4.0 Rel 1.3a
e Sun — Sun SPARCstation 2, 16MB, SunOS 4.1.1, SunFORTRAN 1.4

o SGI — Silicon Graphics 4D/35TG, 16MB, IRIX 3.3.2

o TIP — HP Apollo 9000/720, 64MB, HP-UX A.B8.05

It should be noted that while the times for the iPSC are not spectacular, they are
respectable. We expect that new versions of the compilers will take more advantage
of the advanced features of the i860. This will improve the performance substantially.
It is also important to note that these benchmarks were only run on one node.

3.5 Towards a Parallel ISAJET

We have started work on a parallel version of ISAJET. There are four main areas
that need to be addressed.

¢ Program Control

e Inpul



e QOutput
o Random Numbers

The first three bullets state the standard problems of writing soltware for parallel
processors. Program Control refers to the interaction with the user and controlling
the actions of the individual processors. This involves specifying the files for /O,
arranging the output of intermediate results, obtaining and combining run statis-
tics (eg. integrated luminosity), and controlling the number of events the various
processors generate,

There are three types of input that need to be handled; command decks, stalic
data files (eg. decay tables), and user inputs such as the filenames for command
decks and I/O data files. Output data files and listings are examples of outpul that
must be handled.

In order to produce large numbers of statistically meaningful events we need a
good source of random numbers. Random numbers and their use in parallel appli-
calions are described in detail in section d.

There is sufficient support in ISAJET to make the program control conversion
relatively easy. A process running outside of the farm is set up as the controlling
process. This process would be running on the host machine: either the SRM or a Sun
workstation. The process would be responsible for controlling the event generation,
specilying the files for 1/0, and gathering and presenting intermediate results and
final run statistics.

The subroutine that contains the event loop can be easily modified to allow an
outside process to control the number of events generated and to monitor the event
loop.

The routines that collect the run data and calculate the statistics are also easily
modified. These functions can be implemented as an interrupt handler so that the
controlling process can gather the intermediate statistics without disturbing the event
generalion.

The changes necessary to handle input in a parallel environment are slightly more
complicated. Static data files can be handled by having each node read the file. This
is preferable to reading the files once and passing the data between the nodes hecause
it keeps the control and data flow structures simple. It is not clear that either method
is more eflicient so we choose the solutions that are the easiest to implement.

The specification of filenames by the user can easily be implemented either by
the controlling process on the host or through an extension to the command deck
mechanism.

The main problem with input is handling the command deck. Most of the com-
mands that can be given are general enough that they can be passed through to
the node processes. The problem lies in specifying the number of events to generate
and the options for printing event data to the listing file. The user specifies these
uantities on a single card that also contains the center-of-mass (CM) collision en-
ergy. There are several options for handling this card. It may be ignored (except lor
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the CM energy parameter) and specified to the controlling process via a keyboard
input. Another option is for the controlling process to parse the command deck and
regulate the number of events generated.

ISAJET already has facilities for modifying the output data stream; there ave
several levels of ‘indirection’ from the routine that decides to write an event and the
routine that actually contains the FORTRAN WRITE statement. The iPSC system
allows the user to specify an I/O mode where there is exactly one file pointer and
each process that accesses the file updates the point appropriately. One output
file can thus be written from several nodes without confusing the output stream or
overwriting, The output data stream also contains a header and a trailer record
that contains various information about the run. This data can be written by the
controlling process.

The output dala structures need to he modified to contain new data that is
important to keep when running generators on several nodes simultaneously. This
data includes, but is not limited to, expanded random number generator parameters
and the number of nodes used to generate the events. This is a relatively minor
change.

There are two problems with listing file output. First, there is a lot of dupli-
cated data: run title, date, various parameters, etc. Second, i{ is impossible o tell
which process generated any given record in the listing file. Also, in the current
implementation, the data writien to the listing gets written from a large number
(about 30) of routines. In order to make a parallel version of the code, each of these
WRITE statements would need to be modified. instead, it is better to pass the data
to written out to a single routine that will write it to the listing file. This routine
can then decide would to do with the data. We have made this change to ISAJET
and sent the results to Frank Paige to include in the regular distribution, A simple
addition to this routine will write out the node number that generated the record
along with the record to the listing file,

We have started writing the code necessary to make these changes and expect
them to be completed by the end of September 1991. We hope to have the parallel
iPSC version distributed along with the single threaded version. The concepts and
implementation needed to convert the single threaded ISAJET mto a parallel gen-
erator are the same for most generators and simulators. We expect to complete a
parallel version of GEANT for distribution within the next 3 months.

4 Description of Intel Farm Simulator—-Hypersim
Overview

Hypersim was developed by Intel Scientific Compuiers Lo evaluate {he performance
ol various architectural alternatives for its future parallel machines. Details ol the
simulator can be found in Bain {13]. A brief overview follows.

Hypersim implements some details of the hardware, microcode, and operating
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Figure 3: Message Flow Through a Simulated Node

system software of the iPSC machines. It is written in a modular fashion so that the
choice of details to implement can change as the needs of the simulation change. This
allows the developer to focus on a particular region of interest as the goals become
beiter defined after early stages of the simulation.

The complete interface to the node operating system (NX/2) is provided. Us-
ing this interface, developers can construct actual iPSC applicalions and test their
performance on various hardware and software configurations.

The simulator is built on top of the Interwork 11 [14] concurrent programming
environment. Interwork II provides a framework for simulating a large number of
nodes with a much smaller number of processors by implementing light weight pro-
cesses or tasks. These tasks are much more efficient to run and are easier to control
then normal heavy weight processes controlled by the CPU. A 1024 node systems
can thus be simulated on a 32-node iPSC system with 4 MB of memory per node.
This results in approximately 6000 tasks to simulate the architecture.

Interwork II also provides the global name space and time synchronization facil-
ities needed to run the simulation.

Interwork 11 tasks represent software functions {both user and systems code)
and hardware state machines. Global data objects provide the basis for inter-task
communication and synchronization. Various parameters are available to change the
important characteristics of the hardware and software system architecture.

Figure 3 shows the key Hypersim objects and tasks, and their access relationships.
The data objects consist of:

o NOSDATA — This represents the NX/2 data structures. One object exists for
each simulated node.

o REQBUT — These queues hold incoming and outgoing user and NX /2 system
messages

o COMBUF — These queues buffer all messages passing through the node

The tasks consist of:
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e USER TASK — This is the users application program,

o SEND SERVER — This task builds the network level message headers and
models the movement of data from memory into the network.

e BUF SERVER — These model the microcode or hardware base function of
receiving incoming message pieces and moving them through or into the sim-
ulated node.

¢ RECV SERVER — This task models the software interrupt handler which
services received messages for the associate node,

Hypersim currently measures the average latency for messages sent between sim-
ulated user processes. This latency has three components: NX/2 overhead, transmis-
sion and routing delays due to passing through hardware, and transmission delays
due to congestion.

5 Generating Reliable Random-Numbers

In many applications, such as high-resolution Monte-Carlo simulalions, it is nec-
essary to produce a large number of random numbers with minimal correlation or
repebition. We discuss the conventional Linear Congruential Method and techniques
for improving the random sequence. Based on this work, we propose a change to
the present multiplier (in RANF) used by ISAJET that reduces correlations. A fast
and portable random-number generator implemented in C is also presented. Finally
we discuss the “leapfrog” algorithm for generating random numbers on an array of
parallel processors,

5.1 Properties of a good Random-Number Generator

A good sequence of random numbers should have the following properties:

o There should be a mathematical description of the reliability of the random-
number generator,

o [t should pass empirical testing criteria, such as the gap test and the coupon
. collector’s test. See Knuth [15] for a complete discussion of empirical tests.

o It should pass a theoretical test like the spectral test.

¢ It should have a long period. The desired length might depend on the particular
application.

o It should be reproducible. In most applications it is necessary to test the
program using the same sequence.
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o The algorithm that produces the sequence should be efficient with regards to
CP1 usage.

I'he need for long period random-number generators is particularly acute for SSC
simulations. Large numbers of events need to be generated and simulated for rare
phenomenon searches and large statistics experiments. As an example, generating
ISAJET events for six different processes are shown in Figure 4. These events were
generated with ISAJET version 6.43 and the sample command deck provided with
ihe distribution, In all cases 10,000 events were generated. The CM energy for
all processes except HIGGS was 800 GeV, and for HIGGS 40 TeV. The jet Pr
limits for all processes that generate jets was 50 < Pp < 100 GeVand for HIGGS
50 < Pr < 20000 GeV.

The results show that the average number of random numbers used varies between
1500 and 3000 except for MINBIAS (900) and HIGCS (6800). Hence, a sale upper
bound on the number of random numbers needed by ISAJET is 10,000, except for
very high-energy HIGGS, A 48-bit random-number generator, as is in common use,
generales 10" numbers. This gives approximately 10" evenis. IL is difficult to
generate orders of magnitude more events withoul using (4-bit precision generalors
or different algorithms.

5.2 The Linear Congruential Method

The linear congruential method is the most common and the most misused random-
number generator, This is the algorithm used in RANF, which is used by ISAJET.
The formula for producing the next member of the sequence, X, 41 given X, is

Xppt = (a- X, + ¢) mod m (1)
wlere m, is the modulus (m > 0), @ is the multiplier (0 < @ < m), and ¢ is the
increment (0 < e < m). Choosing these constants carefully can produce an excellent
random-number generator. Unfortunately, the numbers used in most implementa-
tions are not satisfactory. However, this method has several advantages: it can be
computed very cfficiently, if m is chosen to reflect the underlying architecture (e.g.,
a power of 2, on a binary computer). Furthermore, one can continue the sequence by
just remembering the last number produced. In fact, the &Y number in the sequence
can be computed:

XNogr = (" - X+ (@* — 1)+ ¢/b) mod m (2)

where b = a — 1.

For a complete discussion on the theory behind the generator and picking good
constants see Knuth [15]. The next subsection summarizes Knuth’s results.

It is important to note that more complicated random-number generators have
been proposed. See [16] for several generators achieving considerably longer periods

12
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and better “randomness” than the Linear Congruential Method. The disadvantage
of these generators is the slower calculation speed (one to two orders of magnitude
slower than RANF) and more data must be stored to restart the sequence (typically
two orders of magnitude more than RANF). Furthermore, given the methods dis-
cussed in [L5] and [L6], one can construct an acceptable random-number generalor
from a Linear Congruential Generator,

5.2.1 Choosing the Constants

According to Knuth,
“The linear congruential sequence defined by n,a,c and Xo has period length m if
and only if

1. ¢ is relatively prime to n;
9. b= a — 1 is multiple of p, for every p dividing m;
2. bis a multiple of 4, if m is a multiple of 4.7

The above is a theorem proven in [15](pages 16-18). It is noteworthy, that the last
two criteria reduce to
amod 8=5 (3)

when m is a power of two. Knuth also asserts, “the ‘seed’ number Xo may be chosen
arbitrarily. ... The number m should be large, say at least 230, ... The value of
¢ is immaterial when « is a good multiplier, except that ¢ must have no factor in
common with m. Thus we may choose c =1 or ¢ = a.”

(‘hoosing a good multiplier requires testing the multiplier with the spectral test, given
in Knuth {15](pages 89-110). The spectral test, basically, measures the cotrelation
of consecutive k-tuples in the sequence. Given a sequence of numbers produced by
the linear congruential method, since the period length is finite, consecutive k-tuples
form a grid in k-space. The set of points in the grid can he spanned by a set of
parallel lines (or planes or hyperplanes, in general k-planes).

5.2.2 Spectral Test

The spectral test measures the distance between these k-planes. The reason for
performing the spectral test is that many multipliers can generate sequences that pass
the common empirical tests; yet few multipliers pass the spectral test. Correlations in
l: -space represent the most significant problem with the Linear Congruential Method.
The spectral test will produce one number per dimension analyzed (¢, where t is the
dimension, and 117‘ is the distance between the {-planes). From »} one can calculale
the parameter g, which is independent of m. For a complete discussion of i, see [15].

This generator will produce over 10M (2%%) random numbers hefore repeating.
Knuth asserts that if the multiplier achieves a gy > 1.0, in every dimension (up to
six) it has passed the spectral test. There are many multipliers that pass this criteria,
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Therefore, we are able to choose a more strict criteria; see Table 3 for our criteria,
For our particular implementation, we choose m = 218, ¢ = 1 and a tuple-length k
= 6.

[t ] Max g [33% ] 50% | 67% | 75% |
2 3.63] 1.20] 1.82] 2.43] 272
592 1951 2.96] 3.97] 444
9.87 [ 326 | 4.94] 6.61] 7.40
1489 [ 491 745 9.98 | 1117
23.87 | 7.88 | 11.94 | 15.99 | 17.90

oo [ TS L]

Table 2: Theoretical maximum g for 2 < ¢ < 6, with percentages of maximum.
Values of jt; > 1.0 pass the spectral test.

¢ Cut-off } Corres. pt; | % of py
2 || 'DDA4D3EE8S800°X 2.72 75
3 *F7006C00X 3.97 67
4 10022507 X 4,94 50
H '8EFF8° X 3.51 24
G 110094 ‘X 5.97 25

Table 3: Chosen Cut-off #? with corresponding ji;. Note, values of yi; > 1.0 pass the
spectral test.

Applying the spectral test to over 231 possible multipliers (out of 24*) produced
the Tables 5 to 12, included in Appendix B. This was a very CPU intensive task,
using over 3650 1860 CPU hours on the Hypercube. All of these numbers passed the
spectral test and could be used as the multiplier in RANF.

We have demonstrated that the multiplier used in RANF does not pass the spec-
tral test. We assume, that running the spectral test at the time RANI was wrilten
was not practical since the CPU hours required is so large. Although CERN may
not want to change RANF at this point, users with demanding requirements may
want to consider such a change. We include the results of the spectral test using the
multiplier used in RANF and show the results in Table 3.

5.3 Performance of New Random-Number C-Program

We have run our random-number C-program, presented in Appendix B, on both the
Sun and iPSC/860. We find a 50% improvement on the Sun over RANF and a factor
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It v [ ]
2 || "64BB1EECS3DA’X | 1.04
'4863653A°X | 0.604
'68217E'X | 0.816
'44578°'X | 0.5564
'6676°X | 0.331

oW

Table 4: Spectral test results for 2875 A2E7B175'X used in RANT

of 5 improvement over RANT' from the i860. Since ISAJET spends 20% of its time
in RANF, our routines provides considerable speedup.

5.4 Generating Random Numbers on Concurrent Proces-
sors
5.4.1 Introduction

We are preparing to generate and simulate large numbers of Monte-Carlo events
{or SSC detector and physics studies. The available computing power of the paraliel
processor arrays is necessary for this task. We have begun to understand how best to
perform this task. The distribution of the random numbers to several nodes was one
of the first problems we addressed. A literature search provided some information in
this active field and we present a brief summary of our own random-number work.

5.4.2 Method

(lenerating reliable random-numbers on concurrent processors presents several prob-
lems. The most severe problem is sequence overlap. There are several methods
for producing reliable random number (using the Linear Congruential Method) on
concurrenl processors:

1. One processor can procuce random numbers and deliver them to all processors.
2. Different nodes can use different multipliers.

3. If there are ¢ processors, each will get U, iq, Uptaqs Ungaag, ..., where n is the
processor number and U; represents the " member of the sequence produced.
This is called the “leapfrog” algorithm and was originally suggested by Bowman

g \

and Robinson [19]. See Figure 5.

The first two methods produce results that pass the standard tests. However,
the first method produces a bottleneck when the application requires a large number
of random numbers. It also produces significant communications overhiead, and the
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¥ Unused random number.

@ Selected random number.

Figure 5: ‘Leaplrog’ algorithm (adapted from [17]).

. results of the simulation might not be reproducible unless information on what pro-
cessor produced the sequence. The second method has none of these disadvantages,
but in order to obtain reproducible results, it is necessary to record the multiplier
used to generate a particular set of data. The most significant problem with the
third method is whether the sequences in (3) are as random as the original sequence.
According to Knuth[15](page 71): :

“Experience with linear congruential sequences has shown that these derived se-
quences rarely il ever behave less randomly than the original sequence, unless ¢ has
a large factor in common with the period length. On a binary computer with m
equal to the word size, for example, a test of the subsequences for ¢ = 8 will tend to
give poorest randomness for all ¢ < 16.”

Therefore we propose to use the smallest prime number greater than the number of
processors for our leap value, See I'igure 5 for an example of 4 processors using a leap
of 5, When using equation 2 to produce these sequences, care should be taken not
to lose precision in calculating «*. Any loss of precision will result in an unreliable
generator.

There are other generators proposed in [16] that possess the property that, given
appropriate seeds, non-overlapping (independently disjoint) subsequences can be gen-
eraled. The disadvantage of the proposed generator is the amount of storage space
requirec to record the stale of the random-number generator and the long execution-
time of the algorithm.
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6 An Eight-Node Hypercube Simulation Using
Verilog

6.1 Introduction

The message-passing-system of the hypercube was simulated using Verilog hardware-
description-language. The message-passing-system is a combination of wormbhole
and e-cube algorithms, Detailed specifications were taken {from information pro-
vided by Intel, The MESH machine uses the same routing algorithm as the Hyper-
cube and therefore our experience with the hypercube translates easily to the MESH
simulation.

6.2 Overview

The wormbhole algorithm consists of establishing a complete path between the source
and the destination nodes and then sending the message. The e-cube algorithm
dictates (deterministically) the path to be taken between two nodes.

"The e-cube algorithm states that the channels the path consists of must be sorted
from lowest channel to highest, For example, il node 0 wants to send a message o
node 7, the path will be established by going through node 1 (by channel 0) then
through node 3 (by channel 1) then to node 7 (by channel 2). See Figure 6. When

100 (4) ; 110 (6)
iz 111 (7},
1= WY
i1 . \//\
iz A Path from node 7 to node 0.
[E -
21t : 2
! :
2 i 22 Channel Numbers are in Italics
/ 000 :
Path from node Q to node 7. —\\ ______ - N F—— Node Number: binary (declmal)
TS 0100

001 (1) 1 011(3)

Pigure 6: Paths of communication between nodes 0 and 7

node 7 sends a message to node 0, the message takes a completely different paih,
with no overlaps, since channel 0 coming out of node T goes to node 6 and so forth,
This is a feature of the e-cube algorithm and one of the reasons deadlocks cannot
occur. Messages passed between nearest-neighbors represent the only case when the
path is identical.

Sending a message consisis of three phases:
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L. Establishing a path.
2. Sending the message.

3. Freeing the path.

The path is established by the source node sending a ‘routing probe’ (which
contains the complete routing information, but not the message) to the node next
in the path. That node in turn sends the routing probe to the next node, and so
on, until the destination is reached. When the destination is ready to receive, it
sends an acknowledge signal to the source node. The complete message is then sent
immediately. The end of the message automatically frees the path.

6.2,1 The Simulation with no External I/0

The simulation consists of a behavioral model implemented in Verilog. The node-
interconnections are not simulated by Verilog's hardware wires. The only inlormation
flowing Dbetween nodes is the ‘routing probe’ and ‘{freeing probe’, (The freeing probe
is not in the hardware specifications, but it is convenien{ for simulation purposes,)
In our simulation, there are no messages passed between nodes. The sender CPU
simply waits and keeps the channels reserved according to the length of the message
it is sending. The simulation-message-passing has the following structure:

1. Send the routing probe and wait for acknowledge signal.
2. Delay according to the length of message/(maximum bandwidth).

3. Send the freeing probe.

Sending of routing and freeing probes are simulated by two glohal-memory arrays
that can be accessed by all nodes. If n is the number of dimensions of the hyper-
cube, hoth arrays have (14+n) « 2" elements. Ilach element of the routing probe has
2 -n 4+ 1 bits. The MSB is set if there is a probe request. The next n -bits are the
source node number, The last n-bits are the channels requested by the source node
(which is the source node number XOR’ed with the destination node number; see
IFigure 6}. The source-node number must be sent so that the destination node can
send the acknowledge signal.

The freeing-probe array has just (n+1) bits, because it is not necessary to send
the source-node information. Acknowledgment is accommplished through a global
n? element array. One bit is set when the routing probe reaches the destinalion node.

The routing probe consists of the ‘exclusive or’ of the source and the destination
nodes. The lowest-order-hit that is set in the probe will determine what channel to
go through to get to the next node in the path. The next node, in turn will use the
next lowest order bit that is set and so forth. (To avoid confusion, when a hit in the
routing probe is used, it is set to 0, so the next node examines the lowest-order-hit
and does not have to know which node in the path it is.) The freeing probe functions
in this fashion as well.
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6.2.2 Results of Simulation
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Figure 7: Message Length vs, Bandwidth

Clomparing the results from Figures 7 and 8 to the measured bandwidth and message
latency [20], shows an almost identical match. There are three parameters that were
inferred from the measured graphs: the delay at the source DCM (Direct-Connect
Module) to set up the channel, the delay at the destination and the delay at the
intermediate nodes. These were set to 1 ms, 1 ms and 0.1 ms respectively.

6.3 Simulation with I/O-Event Building
6.3.1 Statement of the Problem

We are interested in distributing a large, continuous stream of data between nodes
in the hypercube. The hypercube performs external 1/O using special 1/O nodes.
The purpose of the simulation is to find the configuration of the 1/O nodes, such
that the data can be distributed to the compute-nodes as-fast-as possible.

Since the network is not completely connected i.c., not every node has a direcl
connection to every other node, channel contention will result. To maximize the

20



8 - :
3 .
= ° u
;L 3 hop message e "
L . "
- L}
L L
% °F e
£ o "
~ r n
& o L]
5 s
5 .« "
= - "
e 4L .
o .
o2 o [ ]
g L .
I u
2,0 .
i »
i n
" [ ]
> b o " 1 hop message
L.
b -
T' 1)1 I I | l|Il|il?lll$‘]!;|fl(]1||||Il!
2600 5000 7500  100CO, 12500 15000 17500
Message Length gbytes
TIMEG14TESTO1(3)

Figure 8: Message Length vs. Bandwidth

speed of data distribution, channel contention must be minimized. Placing the I/O
nodes in different configurations results in different patterns of contention. We as-
sume the incoming data consists of discrete sections spread over & input lines, such
as that expected from the event data in a detector system. In order to analyze a
single event, we collect data (%rh per line) in a single compute node. For example,
if we have 2 incoming data-lines and 6 compute-nodes the first and second halves of
the event data from lines one and two respectively go to the first compute node, data
from the second event to go to the second compute-node and so forth in a round
robin fashion.

We have considered two basic models of data injection or I/O node configuration;
the Injector Model and the Distributed Model. Although the simulation was based
on the Hypercube architecture, the results will hold for any network that uses the

E-Cube routing algorithm.

6.3.2 Injector Model Description

In the Injector Model there are three types of nodes: injector, processor, and the
1/0. The detector injects event records directly into the system network through a
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number of specially designed buffers, the injector nodes. These buffers balance the
burst speed of the detector against the average speed of the network, and route each
injected message to the appropriate (predesignated) processor. The injector node
would take the place of a processor in an an otherwise completely-connected inter-
processor network, The processor nodes are the i860 computers, The 1/0 nodes are
also 1860’ and allow outpub to a permanent storage device or input for testing and
debugging the network.
A schematic of the Injector Model is shown in Fig. 9.

iPSC/860 Hypercube Crate Backplane

DY (b /DY

C C C

M M M
N

com com VME 10

pute pute inter od
face node

node node
SLOT # 0 1 2 3

Figure 9: Preparatory Injector Model.
Shown is the VME interface connected through the iLBX to the I/O node. This is
similar to the Injector Model and can be achieved by rewriting the software driver.

6.3.3 Description of Distributed Model and Fast-1/0-Board

The second approach is called the Distributed Model and is shown in Iig. 10 A
special interface connects a selected number of processor nodes to the detector. This
board is presently under design by Intel and this collaboration is charged with in-
corporating the board’s functionality into Intel MESH simulator. In Fig. 10, the
Fast-1/O-board is connected directly to the I/O node. This allows a more flexible
arrangement of the input data channels, but more importantly, connects the data
or event to the network, where transfer to any number of compute-nodes can take
place without the overhead of transfers. This interface will allow standard processors
to act as injectors as well as computation nodes. This would give a great deal of
flexibility in setting up the optimal configuration for the network.
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Figure 10: Disiribuied Model.
The Distributed Model connects the input data stream directly through the Fast
I/O board to a compute-node. Implementing this scheme requires new hardware
presently heing designed by Intel and simulated by this collaboration.

6.3.4 Simulation of an 8 Node Hypercube with 2 or 4 J/O Nodes

Given an eight node hypercube and two or eight incoming data lines, how should we
position the 1/O nodes such that the data communications are mosl. efficient? With
2 /O nodes, there are three possible configurations. See Figure 11.

With 4 1/O nodes, there are six possible configurations. See Figure 12,

The simulation on two 1/0 node case shows that configuration (c¢) is the best.
The result is more or less intuitive; the simulation simply provides confirmation.
Since the two nodes are furthest apart, there is very little channel contention.

The simulation on the four 1/O node case shows that configuration () is the best.
Althougl this result is not as intuitive as two node case, it is an extension of the
same criteria; the nodes are as far apart as possible, However, if we calculate the
total distance in case (e) we arrive at the same number as in case (I), namely 12.
The reason why case (f) is better than case (e} is because the nodes are more evenly
distributed. Based on these examples, we propose the following criteria for selecting

I/0 nodes:
1. Maximize the total distance between the 1/0 nodes.
2. Minimize the standard deviation of the node distances.

(The total distance is defined as the sum of the distances hetween the 1/0 nodes,
taken two at a time.)
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2 Node Combinations

(2) ® ©)

@  Externally receiving nodes

Figure 11: All possible 2 I/O node combinations.

6.4 Real Time Analysis of Data from SSC Detector and
Data Acquisition Systems

6.4.1 Introduction

Figure 13 shows a schematic of the flow of data from the detector to storage.

The hardware trigger(s) eliminate uninteresting events using cursory criteria. The
data-rate coming into the computing farm should be about 100 Gigabytes/s. The size
of each event is approximately 1 Megabyte. So the farm must be capable of handling
10° events per second. The farm must determine if the events pass particular criteria,
and reject those events that don’t meet these criteria.

6.4.2 Two Possible Solutions to Event Building and Analysis

There are two very different solutions to the problem of event building and analysis
in a parallel supercomputer. These methods are based on data decomposition and
functional decomposition, Data decomposilion, in its simplest form, consists ol
all nodes of the system running the same program on different data. In this case, data
decomposition translates to every node evaluating complete events. If the problem
is solved using functional decomposition, however, different nodes will be assigned
different tasks, In this case, each node (or several nodes) could evaluate the data
from a particular detector subsystem.

1. Data decomposition: collecting the data from the same event in a single
node. Ii is important to note that existing systems huild events using exotic
(and expensive) hardware switches, similar to telephone network switches. At
the data rates for the SSC detector system, this is not a very feasible option.
Therefore, we must build the event in the farm. This model has the following
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4 Node Combinations
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Figure 12: All possible 4 I/0 node combinaiions.

advantages and disadvantages:
Advantages:

¢ Fasy to understand/work with/program.

e Scalable.
Disadvantages:

o Number of compute nodes is limited by both the network bandwidth and
compute speed. Choosing the maxinmum of the two will waste resources,
since Lhese two parameters are unlikely to require same or similar number
ol nodes.

e Very large amount of comununications is required. Small message sizes
corresponding to parts of events can cause a reduction in veal network
bandwidth.

e Further delays are caused when many 1/O nodes are trying to communi-
cate with the same compute node, as is the case most often in this model.
Interleaving the communications will not help appreciably.

e Since all compute nodes get the same number of events/second, easy re-
jections are not taken advantage of.
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Figure 13: Data flow from detector to off-line storage.

9. Functional decomposition: distributing the data by detector subsystem,
This model would require a-priori knowledge of relative data rates from detector
subsystems.

Advantages:

¢ Rejections can save computation and therefore time, since the compula-
tion on a single event is done in parallel

o The modularity of the model lends itself well to large grain scalability.
Disadvantages:

o Harder to work with/program,
Parameters to be investigated:

o Amount of communication required to assess a particular subsystem,
e Distribution of data among processors dealing with the same subsystem.

¢ Number of I/0 and compute nodes per detector subsysten. Dynamic
allocation of nodes per subsystem could be an option.
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7 Concurrent Tracking-Trigger-Algorithm

7.1 Introduction

We have written a tracking-trigger algorithin that runs concurrently on the iPSC/860.
The algorithm is based on the format of data that comes from the large drift-chamber
of CDF. Using the CDF as the tracking detector permits comparison with custon
hardware processors that perform the identical task. High-P; track segments are
found by searching for hits which follow the wire vs. time patterns expected lor
straight (i.e. large P;) trajectories. The track segments are then linked to form the
entire particle trajectory and obtain a measure of the particle Pr. Presently, we have
invoked a 2-D algorithm. In the future we will extend the algorithm to 3-D.

Two-dimensional track reconstruction with good momentumn resolution can pro-
duce a factor of 1000 recuction in fake electron trigger rates when combined with
calotimetric information, Successful implementation of an algorithmm that recon-
structs charged tracks in < 50 ps would influence the design the of the Level-2
trigger for the S5C.

7.2 Implementation and Algorithm

The algorithm begins by forming patterns of hits from the data. It then compares
these patterns with a library of interesting patierns and stores the the patierns or
candidate track segments that match well. In more detail, the algorithm compares
arrays of 8-byte words from a Data-file, representing hits from a drift-chamber cell,
with a similarly formatted Mask-file, which is composed of calculated arrays of num-
bers representing interesting patterns of hits from the drift-chamber.

The following conditions are to be met before a number can be selected to be
compared with the numbers of the mask file:

1. Two adjacent hits of a number cannot differ by more than 4 time bins. This
is a Pr cut on the track in the cell.

2. The time bins must follow roughly a chevron shape. We require any change in
direction lo take place in time bins 0,1,2,3 or 4. This is explained in the Fig. 14
and results from the fact the sense-wire plane is rotated 45° with respect to
the radial direction.

3. There should be at least 4 non-zero entries in the word. This is a simple
requirement on the minimum number of hits in a cell and helps reduce spurious
track segments.

The data file consists of arrays ol 8 byte numbers, each representing the time
bins of the hits. A cell consists of up to 12 wires and each cell has a maximum of
8-entries for each wire. We then form all possible combinations of these entries for
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each cell. This formation of combinations or candidate track segments has used the
following algorithm:

1.

o,

The total number of patterns that can be formed are calculated first.

The total no. of patterns = product of no. of entries in each wire.

Example:

Wire No. Word Wire Length
Wire 1 00001a2 3

Wire 2 0001212 4

Wire 3 0000001 1

Hence, the total number of patterns possible = 3*4*1 = 12

o All wires of the same cell are stored in a link-list. The digits of that wire
are stored as arrays (string). The array index of each element in the list
is decreased till it reaches zero.

o Afler reaching zero, the array index of the predecessor of this element is
decreased and the array index of this element is initialized to its number
of wires.

¢ The array index of this element is decreased until it reaches zero.

o The procedure is repeated till the array index of the first element in the
list reaches zero, indicating that all combinations have been formed.

After forming the linked-list, the combinations are stored in a different struc-
ture (struct compare). The first combination is stored and the number is
searched. Then it is overwritten by the next combination and the loop contin-
ues till all the combinations are completed.

Matching is done using the logical AND. The output is considered a valid
match if there are ai least four non-zero bytes.

7.3 Super Cell by Super Cell Parallelization

The Intel Hypercube or MESH architecture permits a simple and obvious paral-
lelization of the tracking data. We have divided the tracking detector into cells. We
consider each cell as independent and assign the cell to its node. The algorithm then
finds all irack segments associated with that cell. We have run the algorithm and
are presently optimizing the performance.
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8 Budget Proposal for FY92

This last year we purchased a 4-node Hypercube system with software under the
Intel Universities Partners Program. The Partners agreement permitted a discount
of $91,330 in addition to the 10% discount given to universities, In order Lo qualify
for the Partners Program, we have undertaken a joint project with Intel. We have
agreed to write an 1/0 section for their MESH simulation program Hypersim.

In order to purchase the machine, Intel carried part of the cost over to FY92 so
we could receive and use the minimal system. The attached letter from Intel stales
this arrangement and indicates the second payment is $56,245. The letter from Intel
also states we will receive 100% credit of our present iPSC/860 System price toward
the purchase of the MESH machine. The present arrangement was very favorable to
us and we thank Intel for their flexibility.

In the past year, funds from DOE have been augmented with PYI [unds [rom
the NSF to purchase two Sun workstations associated with the iPSC/860 system. In
addition we received an award through the TNRLC which was used to hire one FT'E
programmer, K. Anupiundi, who works 100% on parallel programining issues for this
project.

If funding is approved in FY92, we plan to purchase a small prototype MESH
machine. A limited number (about 10} of these prototype MESH machines will be
available from Intel to selected research partners. The MESH, when released as a
product, is intended to he sold only as large systems. The research machine canunot
be described in detail since we have signed a non-disclosure agreement with Intel.
It is a G-node 1860+ node MESH architecture machine that will include hardware
that permits data to be injected at high rates i.e. rates comparable to the internode
bandwidih,

With the funds requested for FY92, we propose to demonstrate the Level 3 trigger
capabilities of the MESH for low and high Pr events. We will measure data injection
rates into the MESH machine and implement the event builder algorithm. Then
based on concurrent algorithms, we will estimate the rejection capabilities of the
MESH as a Level 3 trigger. The prices are estimates from Intel. We list the items
and the estimated costs.

1. Permanent Equipment

§. MESH machine with 6 i860+ nodes . ...vvviiiineriiiiiiirenrns $119k
2, Two Sun IPC SPARC stalions .o vvv vt iiraie e ciiaeaiaries $10k
Total Bguipment........ e et $120k

2. Salaries

1, Programmer (U. Penn) ..o B45k
2. Computer Science Graduate Student (U, Penn)...............00tt. $15k
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Total Salaries.........c.oovvieniiciiiina, A $60k
Indirect Costs on TEeml 2 ... ittt $40k
3. Final Installment on Hypercube.............oooiiiiiiiiiiiiiiann. $56k
4, Materials, Supplies, and Travel
1. Travel for U. Penn personnel . ... ... $10k
2. Travel for Princeton personnel...........ooiviiiiiiiiiii i $6k
Total Materials, Supplies, and Travel..............coooiii i $16
Indivect Costs on Ttem 4 ... o i e i i e e $11k
Y 721 S P $312k
We also present the budget summarized by institution:
1. U. Penn
Lo Equipment o e $129k
DT ST TP N PSP P $60k
B, T AVEL . ettt e e e e e $10k
dy INAIrect COsE8 oot ettt e it e e e e $47k
5. Final Payment on Hypercube ......oooooiiiiiin o 150k
6. Total U, Pemil. . oui ittt cae ity $302k
2. Princeion U.
1. BQUEPINENE . vt tsere ettt $0k
T T ) AT PP $6k
3. Indirect Costs vttt e e s Sl
4, Total Princeton U. ... ..c.oiiiriirriiniii i iiiinrrenns $10k
B L 5 Y 171 [ P $312k
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9 Responsibilities and Personnel

9.1 Pennsylvania

P. Keener {programmer) works 75% time and K. Anupindi (programmer) works 100%
time on this project. M. Rezaei is a computer-science student and will perform his
senior thesis on the data-flow simulations. L. Gladney and N. Lockyer spend 25%
time on this project.

o P. Keener will continue development of High Energy Physics software for use
with the MESH and Hypercube machines. The goal is to develop a version of
generators and GEANT that runs on many nodes simultaneously. Documentation
will be provided for the user community.

o P. Keener and L. D. Gladney will be responsible for the data injection 1/0
studies into the MESH.

o M. Rezaei and N. Lockyer will demonstrate the capabilities of the event builder
on the MESH and determine the Level-3 trigger rejection capabilities.

o Demonstration of a vertex-trigger concurrent algorithm will be performed by
L. D. Gladney and K. Anupindi.

o GEANT simulations will be done by J. G. Heinrich and K.T. McDonald.

e The Intel Hypersim 1/0-simulation will be demonstrated by P. Keener and N.
Lockyer.

It is planned that the MESH system will be located at the University of Penn-
sylvania.

¢ We have occupied 600 square feet of floor space and have installed the iPSC/860
System.

o Fire protection and climate-controlled environment exist.

9,2 Princeton University

J. Heinrich and K.T. McDonald spend 20% time on simulation studies.

The use of the hypercube in this past year was possible because ol the interest of
Professor S. A. Orszag of the Program of Computational and Applied Mathematics.
We ave very grateful for his support. This machine contains 32-nodes and is still
very useful for studies. We hope to continue to use this machine for the next several
months al 5% level to study the injection of data from the array local disk to the
network and develop software.

32



9.3

9.4

SSCL

L. A. Roberts will continue development of High Energy Physics software lor
use with the MESH and Hypercube machines. Documentation will be provided
for the user community.

Intel Corporation

The Intel Corporation considers the development of large processing farms a major
parl of their program. Intel Scientific Computers has:

Provided an expert consulting and assistance in developing simulations and
models of the processor farm. {W. Bains)

Made available a system expert during the installation stage at the University
of Pennsylvania. (R. Enchelmeyer)

network simulation tests, (P. Messina)
Provided access to the MESH machine at Intel.

Provided a lead scientist to co-author scientific papers that summarize the work
done during this proposal.

Provided parallel-programming seminars.
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A A Fast Random-Number Generator in C

As mentioned earlier, one ol the advantages of the Linear Congruential Method is
that it can be implemented in a very CPU efficient manner. We would like to return a
normalized random number {between 0 and 1). Since we need to reseed the sequence
with the same number that the generator routine returns, all significant digits must
fit. within the precision of the returned number. The data representation with the
most significant figures is a double precision floating point number, with 52 bits of
mantissa precision (ANSI/IEEE 754-1985 standard). So choosing m = 24 s quite
safe. Unfortunately, doing 48-bit multiplies requires 96-hit precision. Therefore, we
must represent the numbers (a, m, X) in base 2%, {.e.using two doubles. To minimize
the number of divisions and multiplies by 22, we represent the numbers as:

X = seed; - 2% 4 seedy - 2% {
a=ap 2%+ ag (
(

c=C - 248 + o 22"

=]
R

where

0 < seedy < 1
0 < seedy <1
0<ag <24
0<u < 9%

We can pick ¢, = 0 and ¢p = 27 to speedup computation.
To further decrease the computation time, we can take advantage of the ANSI/IEEE
floating point representation as follows:

o Division by 2" is equivalent to decreasing the exponent by n.
¢ Multiplication by 2" is equivalent to increasing the exponent by n.

o floor(x)? is equivalent to adding 2°% and subtracting 2°% and possibly decre-
menting by one, since ANSI/IEEE standard specifies rounding, not truncating
of lost digits.

(lare should be taken when increasing/decreasing the exponent to have the correct
byte ordering (little—endian versus big-endian 3). Also, the exponent of zero should
not be increased/decreased.

2floor(x) is the largest integer less than x.

30n most computers memory is organized in 8-bit chunks {byles) in consecutive memory loca-
tions. When a quantily with more than 8-bits, such as a 32-bit integer, is to be stored, it is possible
{0 store either the lowest order byte first {little-endian) or the highest order byte first (big-endian)
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The program is written to be portable, with no modifications, to any platform
that supports double floating-point-numbers with at least 49 bits of manlissa pre-
cision. The hardware specific features can be turned off by defining the FLOOR and
PORT preprocessor variables.

#include <stdio.h>
#include <math.h>

/*
You can define three variables to choose the target machine
architecture:

BIGENDIAN: for bigendian byte order and ANSI/IEEE compliant
double (64 bit) floating point numbers, e.g. i860.
FLOOR: to use floor() as opposed to adding and subtracting
2%*%52 to get the floor of a double
PORT: to use division instead of bit twiddling to divide by 2+%%24

Default is for little endian ANSI/IEEE 64 bit floats and not using floor.
for exmaple

cc -¢ random.c ~-DPORT -DFLOCR

should work on any machine that supports double of at least 48 bit mantisa

while

cc -c¢ random.c -DBIGENDIAN
should work only on machines with bigendian ANSI/IEEE doubles.

M. Rezaei August 1991
*/
double seed0=16651885.0/ (1L << 24);

double seed1=2868876.0/(1L << 24);

double ai1=26515564.0;
double a0=15184245.0;

double mr_ran()

{

double yi,y2;
static unsigned short pow24=0x180;
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static double twob52=4503599627370496.0;
static double c=1.0/(1L << 24);
double %;

yil=al0*seedl+c;

if (y1>1.0)

{
#ifdef FLOOR

y2=floor(yl);
#else

y2=yi+twob2;
y2-=twob2;
if (y2>yl) y2--;

#endif
yi-=y2;

#ifdef BIGENDIAN

*(((unsigned short *) &y2)+3)-=pow24;
#elif defined PORT

y2 /= ((double) (1L << 24));
#else

*((unsigned short *) &y2)-=pow24;
#endif

y2+=al0*seedi+tal*seedl;
else

{

y2=a0*xseedl+tal*seedl;

¥

#ifdef FLOOR

t=floor(y2);
y2-=t;
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ftelse

t=y2+twob2;

t-=twob2;

if (t<=y2) y2-=t;

else
y2=y2-t+1.0;

#endif

seedl=y1;
seedl=y2;

if (y1>0)
{

#ifdef BIGENDIAN

*{ ((unsigned short *) &y1)+3)-=pow24;
#elif defined PORT

y1 /= ((double) (1L << 24));
#else

*((unsigned short *) &yl)-=pow24;
#endif

y2+=y1;
¥

return(y2);

¥

void mr_reseed(newseed)
double newseed;
/* 0 < newseed <= 1 , just like the output of mr_rank/
{
double y1,y2;
static unsigned short pow24=0x180;
static double two52=4503699627370496.0;

y2=newseed;

#ifdef BIGENDIAN

*(((unsigned short *) &y2)+3)+=pow24;
#elif defined PORT

y2 #*= (double) (1L << 24);
#else
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*((unsigned short *) &y2)+=pow24;
#endif

#ifdef FLOOR
yl=floor(y2);
#else

yil=y2+twob2;
yi-=twob2;
if (yi>y2) yi--;

#endif

seedl=y2-yi;
if (y1>0)
{
#ifdef BIGENDIAN
*(((unsigned short *) &y1)+3)-=pow24;
#elif defined PORT
yl /= ((double) (1L << 24));
#else
*((unsigned short *) &yl1)-=pow24;
#endif
}

seedl=y1;
}

void mr_seta(s)
char #*s;
{
char s2{20];
int i,3};
long val;

for(i=0;s[i] 1="\0";s2[i)=toupper(s[i]l),i++);

s2[i]="\0";

if (i<=6) fprintf(stderr,“too small a multiplier, %s\n",s2);
i_._. N

al=a1=0;
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for(j=0;j<6;j++)
{
if (s2[i-31>='A’ 8% s2[i-j1<="F’)
val={(long) (s2[i-ji - 'A’ + 10)) << (j*4);
else val=((long) (s2[i-j1-°0’)) << (j*4);
a0+=(double) val;
}
for(j=0; j+6<=1i;j++)
{
if (s2[i-j-6]1>="A’ && s2[i-j~6]1<="F’)
val=((long) (s2[i~j-6] - A’ + 10)) << (j*4);
else val=((long) (s2{i-j-6]1-'0’)) << (j*4);
al+=(double) val;
}
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B ‘Good’ 48-bit Linear Congruential Multipliers

Tables 5 through 12 show the values of multipliers for 48-bit linear congruential
multipliers that pass our criterion and their associated values of y,.

[ Multipliee [ g2 | s | s | 15 | ps |
'80006AAT3TE*X || 2.766 | 4.444 | 6.369 | 3.700 | 6.516
*8000F2461E5'X (| 2.726 | 4.100 | 6.671 | 4.142 | 6,290
*8000F61C16D'X || 3.307 | 5.304 | 5.367 | 3.926 | 6.132
*80018086835°X |1 3.321 | 3.988 | 5.7021{ 3.761 | 6.231
*80026A3DDAG’X || 2.998 | 4.276 | 5.596 | 3.676 | 6.019
*80029F4EE35°X || 2.896 | 4,189 | 56.835 | 3.726 | 6.929
PSO02FFGATCHE Y || 3.026 | 4.798 | 5.295 | 3.6562 | 8.003
*800368ABTEE’X || 3.016 | 5,043 | 5,110 | 4.090 | 6.088
*8003899B4BD*X || 2.789 1 4.086 | 4,975 | 3.990 | 7.481
*80038BEFT45%X || 3.112{ 4,272 ]| 5.689 | 3.707 { 6.333
*80044C387TAD?X || 2.866 1 4.278 | 4.997 | 3.612 | 6,137
*8004C8417F6?X || 2.793 | 4.0 | 6.964 { 4.236 | 6.571
'800518D8EBD*X || 3.0658 | 4.284 | 4,956 { 3.619 | 6.459
’80054A0FA35°X || 2.999 | 4.374 | 6.205 | 4,269 | 7.105
'800589ATC8D’X || 3,116 | 4,045 | 5.783 | 3.863 | 7.233
'SOQ0SD2FBECD’X || 3.341 | 4.031 | 6.114 | 4.143 | 7.029
YSO0TBBOAETS X (1 2,931 | 4.594 | 5.179 | 3.675 | 7.108
*8008DFFO48D°X || 2.758 | 4.384 | 6,530 | 3.781 | 6,846
*800B1530415°X |{ 3.048 1 5.098 | 6.415 | 3.549 | 6,879
'800B3653AED’X i1 3.165 | 5.009 | 6.368 | 3.773 | 6.861
*800BD10428D*X || 3.080 } 4.229 | 6.097 | 4.894 | 7,419
*800RF21410D°X || 3,007 1 4.627 | 6.168 | 3.568 | 6,022

Table 5: Good multipliers between 80000000005’ X and *800K1E94085’°X
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| Multiplier || g2 | gs | pa | ps

'FOCOA1BE4156*X || 3.023 | 4.421 | 5.526 | 4.787 | 7.147
'FOOCA3D391D’X || 3.158 | 4.506 | 5.764 | 3.8956 | 6,297
*FOOODTDDBCE X || 2.760 | 4.145 | 5.541 | 3.592 | 8.0156
'FO0131032B5°X || 3.236 | 4.042 | 5.802 | 4,667 | 8.087
'FOO179B0E45°X || 3.245 ] 4.596 | 6.143 | 3.555 | 6.208
'FOO19C8BEO3D’X || 2.832 | 4.327 | 5.278 | 4.833 | 6.586
'FO02C5260F5°X || 2.949 | 4.529 1 5.162 | 4.302 | 7.481
*FO046463E76°X || 3.200 | 5.092 | 56.386 | 4.060 | 7.811
*FOOG3BBEGED’X || 3.011 | 4,080 | 5.097 | 4.198 | 6.585
'"FOOBBB0BAOD’X || 2.852 | 4.105 | 6.526 | 3.824 | 6.189

Table 6: Good multipliers between *F0000000005°X and *F0057727985°X

| Multiplier | o | s ta | pts te |
11000005882BD’X |} 3.105 | 4.166 | 5.402 | 4,281 4,202
?100006CT76B6D’X || 2.761 | 4,136 ] 5.937 | 3.9567 | 10.119
1000127C7C6D*X || 2.949 | 5.063 | 5.075 | 3.907 6.605
'100G21BD86EBD X || 3.167 | 4.278 | 5.001 | 3.696 6.673
*100024F4DDBD*X || 3.246 | 4.363 | 5,227 | 3,609 | 6,163
*10002DBATFCE*X || 2.802 | 4.371 | 5,101 | 3.932 9.722
*1000352F96DD’X || 3.135 | 4.073 } 5.069 | 3.806 6.738
*1000416F8485°X || 3,136 | 4.225 | 5,913 ] 3.609 6.069
'100044FA312D’X }} 2.949 {1 4.614 | 5.329 | 4.280 6,367

Table 7: Good multipliers between *100000000005°X and *100047A41°145°X

I Multiplier ™ | g2 | g3 | ju | ps | e |
*2000001F27C67X || 2.978 | 4.635 | 4.612 | 3.755 | 5.402
*2000007COFES’X || 3,261 | 4,009 5,187 | 3,744 | 7.128
'20000A067A16X | 3.493 | 4.363 | 5.688 | 3.798 | 6.504
'20000AAA2BAB°X || 2.889 | 4.704 | 5.979 ] 4.364 | 6,715
'20001A03BFFB’X || 3.007 | 4,773 |{ 6,310 ] 3,623 | 6.587
'20001F2DA35D’X || 3.218 { 4.763 | £.817 | 4.315 | 6.651

Table 8: Good multipliers between 200000000005’ X and '20003161B945'X
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I Multiplier || w2 | 45 | pa | s | s |
'287BBOECEB2D*X || 3.227 | 4.161 { £.324 | 5.066 | 6.458
'28TBBA91IFCEG X || 3.085 | 4,119 { 5.347 | 3.886 | 6,039

Table 9: Good multipliers between "2875A21ED2FB5’X and *2875BAIF39F5°X

| Multiplier ] 2 | s o | ops | ope |
*40000063ED8D'X || 3.129 | 4.160 | 56.102 | 4.354 | 8,064
*400002F7TFEED’X || 2.834 | 4.933 | 6.009 1 4.287 | 7.362
'40000A6F9795°X || 3.047 | 4.069 | 5.222 | 3,663 | 7.733
'40000DCECD3567X || 3.261 | 4.614 | 4.962 | 3,724 | 7.142
’400012144C5D°X || 2.733 | 4.501 1 5.450 | 4.099 | 6.872
*400016AEB4A5'X || 2.866 [ 4,117 { 5.040 | 4,275 | 6.120
'400019AT2EAD'X || 2.724 | 4.222 | 5.422 | 3,716 | 6.682
*40001EC11115°X )| 2.873 { 4.042 | 5.533 | 3.887 | 6.547
*400020901FO05’X || 2.976 | 4.216 | 5,164 | 3.591 | 6,485
'400029794716°X || 2.875 | 4.465 | 6.119 | 3.865 | 7,809
'400036COES8D’X || 2.813 | 4.248 | 5.252 | 4,236 | 8.558
’40003834E9F5°X || 3.294 | 4,576 | 6.103 | 3.682 | 7.684
*40003999B535°X || 2.920 | 4.434 | 5.216 | 3.768 | 6.668
*40003E87B36D’X || 3.213 | 4.116 | 5.089 | 5,034 | 6.863
*40004BCOCEOD X || 3.266 | 4.007 | 5.307 | 3.678 | 8.586
*40005365AD6D*X (| 2,908 | 4.003 | 5.077 | 3.738 | 6.660
*400054E5001D°X || 2.768 | 4,237 | 5,261 | 3.768 | 7.029
'400069511E65°X || 3.167 | 4.063 | 5,136 | 3.722 } 7.7556
'40006769660D’X || 2.804 | 6.026 | 6,213 { 3.729 | 7.389
'40007DF82875°'X || 3.332 [ 4.470 | 6.273 | 4.265 | 6.870

Table 10: Good multipliers between *400000000005°X and 400083745808’ X




” Multiplier ]] o I ia iy s [ I8 ||
'800003378EAG’X || 2.771 1 4.632 | 5.409 | 4,022 | 6,474
*800004817935°X |1 3.021 | 3.990 | 5.347 | 3.557 1 6.179
'80000647CA45°X |} 3.421 |1 3.990 5.080 | 4.683 | 8.815
’8000187hDODD’X || 2.943 [ 4.168 | 5,142 | 4,216 | 6.817
'80001B356196°X || 3.509 | 4.473 | 5,205 | 4.146 | 6.148
*80001CABDFDD’X || 3.006 | 4.234 | 5,599 | 4,481 } 7.103
*80COIECEBO35E’X || 3.044 | 4,579 | 5.017 1 3.818 | 7,146
'8000221E6B6D*'X || 3.240 | 4.402 | 5,207 | 3.b41 | 7.066
'80002233C1956°X |1 3.100 ( 4.040 | 6,333 | 3.957 | 6.335
'800027C75B7D?X || 2.928 { 4,032 | 5.668 | 3,650 | 6.447
'80COZELIE20CE’X || 3.071 | 4.000{ 5,680 | 3.986 | 6.9256
'80003520F88D°X | 2,782 | 4,067 | 6.6571 | 3.529 | 6.491
*80003DT7CESTE X |} 2,769 1 4,329 | 5,485 4.763 | 7.119
Y800060E41F9D X | 2.953 | 4.337 | 5.538 | 3.857 { 7.678
*8000BOEEEQAS X || 3.229 | 4.176 | 6.714 | 3.56583 | 7.120
'8000BASED725°X || 2.931 | 4,028 | 5.288 | 3.823 | 6.651
*80006E1503ED'X (| 3.230 | 4.517 { 6.031 | 3.655 { 6.883
'8000T6AB50056X || 3.076 | 4.477 | 5.014 | 4.790 | 6.612
'80007947426DX || 3.206 | 4.798 | 5,968 | 3.666 | 6.012
*800081FBiDDD*X || 3.303 | 4.260 | 6.217 | 3.6569 | 9.389

Table 11: Good multipliers between *800000000005’X and *8000856 AC905'X
I Multiplier || g2 | ps | s | pe |
*FOO00199DDFD’X || 2.905 | 4.941 | 5,390 | 3.684 | 8.007
*FOO00A603376°X || 2.986 | 4.470 | 6.671 | 3.810 | 7.827
'FO0012669196X || 2,830 | 4,069 | 6,073 | 4.478 ] 6,095
'FOO0178DTO16X || 3.544 | 4.239 | 4.971 | 4.435 | 6.767
'FOO019145FCD*X || 3.142 | 4.419 | 5.275 | 3.721 | 6.364
'FO001C9994CD*X || 2.900 | 4.872 | 5.757 | 4.266 | 6,154
Table 12: Good multipliers between "F00000000005'X and "F000304D99C5'X
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