

QCD IN THE LIMIT $x_F \to 1$ AS STUDIED IN THE REACTION $\pi^- N \to \mu^+ \mu^- X$

Kirk T. McDonald

Joseph Henry Laboratories Princeton University Princeton, NJ 08544

[To appear in the Proceedings of the Advanced Research Workshop on QCD Hard Hadronic Processes, St. Croix (1987)]

ABSTRACT

In Fermilab experiment E 615 we¹ have measured the production of high-mass muon pairs with 80- and 252-GeV pion beams. The relatively large momentum of quarks in pions allows us the study the QCD subprocess $q\bar{q} \to \mu^+\mu^-$ in the kinematic limit $x_{\pi}^{\bar{q}} \to 1$. The data are consistent with many of the features of a higher-twist analysis, particularly the departure of the muon-pair angular distribution from the standard form $1 + \cos^2 \theta_t$. Analysis of J/ψ and ψ' production in the same data sample gives further evidence for interesting effects as $x_F \to 1$, which we attribute to the process $q\bar{q} \to c\bar{c}$.

INTRODUCTION

In a previous experiment² we were the first to measure the valence-quark distribution in the pion, via a Drell-Yan-model³ analysis of the reaction $\pi N \to \mu^+ \mu^- X$. The valence-quark distribution is approximately

$$q_{\pi}^{v}(x_{\pi}) \sim 1 - x_{\pi}$$

for large x_{π} , the fraction of the pion's momentum carried by the quark. This is in contrast to the well-known result that in the proton

$$q_p^v(x_p) \sim (1-x_p)^3$$

at large x_p . Thus with the pion the kinematic limit $x_{\pi} \to 1$ is rather accessible at presently available energies. In this limit the pion is nearly a single quark.

Theoretical impetus to pursue the limit $x_{\pi} \to 1$ came from a (so-called 'higher-twist') calculation by Berger and Brodsky⁴ who consider that the fast quark in the pion receives its momentum via gluon exchange with other initial-state valence quarks. This leads to QCD corrections to the basic Drell-Yan subreaction $q\bar{q} \to \gamma^* \to \mu^+\mu^-$ which manifest 2 qualitative features:

- a change in the angular distribution of the μ^+ in the muon-pair rest frame from $1 + \cos^2 \theta$ to $\sin^2 \theta$ as $x_{\pi} \to 1$;

- a component of the structure function $F_{\pi}(x_{\pi})$ which is constant as $x_{\pi} \to 1$, with magnitude scaled by $k_T^2/M_{\mu\mu}^2$.

After suggestive evidence for the first feature was found in our previous experiment⁵ we designed E 615 to study this physics in greater detail.

The apparatus is sketched in fig. 1 and described in detail elsewhere.⁶ Data were collected with both 80- and 252-GeV π^- beams on a tungsten target. Results from the 80-GeV sample have been reported previously,⁷ while here we give the first major results from the 252-GeV run.

E 615 APPARATUS

Figure 1. A view of the E 615 apparatus.

CONTINUUM ANALYSIS

First we present the pion and nucleon structure functions, for which the observed continuum muon-pair production cross section is analyzed according to

$$\frac{d\sigma}{dx_\pi dx_N} = \frac{1}{3} \sum_{\sigma} \sigma_{q\bar{q}} \left[\bar{q}_\pi(x_\pi) q_N(x_N) + q_\pi(x_\pi) \bar{q}_N(x_N) \right],$$

where the annihilation cross sections for massless quarks are

$$rac{d\sigma_{qar{q}}}{d\Omega}=rac{lpha^2Q_q^2}{4M_{\mu\mu}^2}(1+\cos^2 heta), \qquad ext{and} \qquad \sigma_{qar{q}}=rac{4\pilpha^2Q_q^2}{3M_{\mu\mu}^2},$$

and the functions q(x) are the quark distributions introduced above. First-order QCD corrections in the next-to-leading-log approximation⁸ modify the model calculations primarily in 2 ways:

$$\sigma_{\mu\mu} \rightarrow K \sigma_{\mu\mu}$$
 where $K \sim 2.5$;

and

$$q(x) \rightarrow q(x, M_{\mu\mu})$$
 with logarithmic dependence on M .

In the continuum analysis the kinematic variables are related by

$$x_{\pi}x_N= au=rac{M_{\mu\mu}^2}{s}, \qquad x_{\pi}-x_N=x_F=rac{2p_L^{\star}}{\sqrt{s}},$$

while $\sqrt{s} = 21.8$ for the 252-GeV data sample.

As our data are restricted to $x_{\pi} > 0.2$ the pair production is dominated by the valence quarks of the pion and we write

$$F_{\pi} = x_{\pi}\bar{u}^{v}(x_{\pi}) = x_{\pi}d^{v}(x_{\pi}).$$

The cross section then factorizes into

$$d\sigma_{\mu\mu} \sim F_{\pi}(x_{\pi})G_N(x_N),$$

where

$$G_N = rac{x_N}{9} \left[4 rac{Z}{A} u_p^v(x_N) + 4 \left(1 - rac{Z}{A} \right) d_p^v(x_N) + 5 u_p^s(x_N) \right],$$

with A and Z labelling the atomic weight and atomic number of tungsten. Based on 36,000 pairs with mass above 4.05 GeV/c² we find the structure functions F_{π} and G_N shown in figs. 2 and 3.9

Our data for the nucleon structure function G_N , shown as solid circles in fig. 2, agree with the trend observed in the CERN NA3 experiment on muon-pair production, ¹⁰ as well as that inferred from deep-inelastic neutrino scattering. ^{11,12} Our result for the bin $0.04 < x_N < 0.06$ lies significantly above the trend of the higher x_N data. The pairs in this bin have mass very close to the cut at 4.05 GeV/c^2 . A study is presently underway to relax this cut, which requires separation of pairs from decay of the J/ψ and ψ' resonances from those due to the Drell-Yan mechanism.

Our results for the pion structure function (solid circles in fig. 3) confirm and extend the trend seen in other experiments.^{2,10,13} As our acceptance is largest at high x_{π} , in contrast to the other experiments, we can address the question of the behavior of F_{π} as $x_{\pi} \to 1$. For this we fit the data to the form

$$F_{\pi} \sim x_{\pi}^{lpha} (1-x_{\pi})^{eta} + rac{2\gamma}{9M^2},$$

suggested by the Berger-Brodsky model.⁴ The fitted parameters are given in the table:

E_{π}	K	α	β	$\gamma ({\rm GeV/c})^2$	$\chi^2/{ m d.o.f.}$
80 GeV	_	0.40 (fixed)	1.37 ± 0.07	0.50 ± 0.14	132/126
252 GeV	2.9 ± 0.14	0.37 ± 0.02	1.22 ± 0.03	0.60 ± 0.24	365/329
$252~{ m GeV}^\dagger$	2.8 ± 0.10	0.36 ± 0.02	1.15 ± 0.03	0.44 ± 0.16	348/331

[†] includes QCD evolution

The parameters for our 80-GeV sample are from ref. 6 in which $x_{\pi} > 0.4$ and it was not possible to measure the K factor. The parameters α , β , and γ in the third line of the table are actually functions of M. For this we follow the prescription of QCD

Figure 2. Measurements of the nucleon structure function, $G_N(x_N)$: • = this experiment; $\diamond = \text{NA3}$; dashed curve = CDHS; solid curve = CCFRR. 12

Figure 3. Measurements of the pion structure function, $F_{\pi}(x_{\pi})$: • = this experiment; $\diamond = \text{NA3};^{10}$ solid curve = $\text{NA10}.^{13}$

Figure 4. $\langle p_T^2 \rangle$ of the muon pairs as a function of x_F .

Figure 5. The K factor defined in the text as a function of $\sqrt{\tau} = M/\sqrt{s}$: $\diamond =$ this experiment; $\Box = \text{NA10}$; $\Box = \text{NA3}$.

evolution given by Buras and Gaemers;¹⁴ the stated values are evaluated at M=4.5 GeV/c².

Our evidence for a constant component of F_{π} as $x_{\pi} \to 1$, as measured by γ , is of 2.5 to 3 standard deviations in significance. The suggestion of Berger and Brodsky is that

$$F_{\pi} \sim (1-x_{\pi})^2 + rac{2}{9}rac{\langle k_T^2
angle}{M^2},$$

where $\langle k_T^2 \rangle$ is the square of the intrinsic transverse momentum of the quarks. Our values of $\beta \sim 1.2$ are not in close agreement with the model, while our nonzero values for γ lend support to it.

The square of the transverse momentum of the muon pairs is shown in fig. 4 as a function of x_F . It takes a clear drop towards the value 0.5 (GeV/c)^2 as $x_F \to 1$. A possible interpretation of this is that gluon emission, which leads to larger transverse momentum at moderate x_F , is no longer prominent at large x_F where the intrinsic transverse momentum dominates. If so, we find good consistency with the value of $\gamma \sim 0.5 \text{ (GeV/c)}^2$ determined in the structure function analysis and interpreted in the Berger-Brodsky model.

In the structure function analysis we only consider pairs with 4.05 < M < 8.55 GeV/c² to avoid contamination from resonances. Above the Υ family, we have 156 events with $M_{\mu\mu} > 11$ GeV/c². In fig. 5 we compare these high-mass events with the trend of other experiments, 10,13 plotting the K factor as a function of $\sqrt{\tau} \equiv M/\sqrt{s}$. For this we define the K factor as $d\sigma(\text{observed})/d\sqrt{\tau}$ divided by $d\sigma(\text{Drell-Yan})/d\sqrt{\tau}$, including QCD evolution in the structure functions but not in the normalization of the Drell-Yan calculation. Our results indicate a rise in the K factor with $\sqrt{\tau}$, in contrast to the report of the CERN NA10 experiment. The issue is complicated by the fact that the highest mass events come from the high-energy tail of the beam spectrum, or from nucleons with Fermi motion towards the beam particle. In particular, all Drell-Yan experiments attempt to correct the results for Fermi motion in slightly varying ways before comparing with calculations (while in the deep-inelastic-scattering experiments no such attempt is made).

Figure 6 shows the results of a fit to the angular distribution of the μ^+ in the muon-pair rest frame, using the t-channel coordinate system in which the incident pion lies along the z-axis. The most general allowed form of the angular distribution is 15

$$\frac{d\sigma}{d\Omega} \sim 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi.$$

In the naïve Drell-Yan model with massless quarks and no transverse momentum we would have $\lambda=1$ and $\mu=\nu=0$. Standard QCD corrections lead to the prediction that μ is small while ν can be nonzero, but $1-\lambda=2\nu.^{16}$ The Berger-Brodsky model notes that near $x_{\pi}=1$ the quark in the pion must be off-shell, leading to the prediction

$$rac{d\sigma}{d\Omega} \sim (1-x_\pi)^2(1+\cos^2 heta) + rac{4}{9}rac{\langle k_T^2
angle}{M^2}\sin^2 heta + rac{2}{3}\sqrt{rac{\langle k_T^2
angle}{M^2}}(1-x_\pi)\sin2 heta\cos\phi.$$

The solid curves in fig. 6 are only to guide the eye, while the dashed curves are for the Berger-Brodsky model. At moderate x_{π} the sum rule $1 - \lambda = 2\nu$ does not seem

Figure 6. Fitted values of the parameters λ , μ , and ν pertaining to the angular distribution of the μ^+ about the direction of the incident pion in the muon-pair rest frame. The solid curves are only to guide the eye, while the dashed curves are from the Berger-Brodsky model.⁴

Figure 7. The cross section times branching ratio per nucleon for production of the J/ψ and ψ' resonances as a function of x_F . The solid curves are fits to the data, while the dashed curves are from the $q\bar{q}\to c\bar{c}$ annihilation model.

Figure 8. The ratio of the cross section (times branching ratio) for ψ' to that for J/ψ production. In the $q\bar{q}$ annihilation model this ratio has the value 0.15.

well satisfied, while at high x_{π} the data are in reasonable agreement with the Berger-Brodsky model. Both μ and ν are observed to increase with transverse momentum, and are consistent with a linear dependence on this variable. Where our data overlap with those of the NA10 experiment¹⁷ good agreement is found.

Our data on continuum muon-pair production thus broadly supports the view that a high- x_{π} quark has gotten its momentum from a gluon which was emitted by another initial-state quark. This is a non-asymptotic QCD effect in that the gluon is not free, yet a well-defined calculation is possible. This contrasts with the typical application of QCD: calculations are possible only at asymptotic energies where no data exist, while the phenomena accessible at present energies cannot usually be calculated in the theory.

RESONANCE ANALYSIS

QCD effects in the reaction $\pi N \to \mu^+\mu^- X$ occur in the initial state and so are not specifically tied to the Drell-Yan mechanism. It is provocative to examine our data on resonance production at large x for additional evidence of the Berger-Brodsky effect. A first result has already been reported in which we found that the decay angular distribution for $J/\psi \to \mu^+\mu^-$, while typically flat, approaches $\sin^2\theta$ as $x_F \to 1$. If the J/ψ particles are produced via a $q\bar{q}$ annihilation of intial-state quarks this would indeed appear to be consistent with the view of Berger and Brodsky. However it is usually considered that the majority of J/ψ 's are produced by gg interactions. Here we give new results that suggest the $q\bar{q}$ annihilation mechanism may dominate at large x_F .

Figure 7 shows our measurement of the cross section times branching ratio for the J/ψ and ψ' particles as a function of x_F . The dashed curves show the calculated cross sections supposing the reaction $q\bar{q}\to c\bar{c}$ can be described by a Breit-Wigner resonance. The calculated rate includes a K factor of 2.8 as observed to hold for our continuum data. This model falls below the data at moderate x_F , but agrees well at very large x_F . Figure 8 shows the ratio of ψ' to J/ψ production as a function of x_F . The $q\bar{q}$ annihilation model predicts a value of 0.15 for this ratio, which is approached by our data at large x_F . Thus resonance production by gluon fusion appears to die out with x_F , allowing $q\bar{q}$ annihilation to appear and to manifest QCD effects like those seen in continuum production at large x_F .

Our data provide several illustrations that the accessibilty of the limit $x_F \to 1$ in πN interactions yields striking evidence for non-asymptotic, but calculable QCD effects at Fermilab energies.

REFERENCES

1. The members of the E 615 collaboration are: University of Chicago: C.E. Adolphsen, J.P. Alexander, K.J. Anderson, J.S. Conway, J.G. Heinrich, K.W. Merritt, J.E. Pilcher, and A. Possoz; Iowa State University: E.I. Rosenberg and D.T. Simpson; Princeton University: C. Biino, J.F. Greenhalgh, P. Kaaret, W.C. Louis, K.T. McDonald, S. Palestini, D.P. Russell, F.C. Shoemaker, and A.J.S. Smith.

[†] For the resonance analysis we define $x_F = p_L^*/p_{L,\max}^*$, which has a maximum value of 1. This contrasts with the definition used in the continuum analysis for which the maximum is $1-\tau$.

- 2. C.B. Newman et al., Determination of the Pion Structure Function from Muon-Pair Production, Phys. Rev. Lett. 42:951 (1979).
- 3. S.D. Drell and T.-M. Yan, Massive Lepton-Pair Production in Hadron-Hadron Collisions at High Energies, Phys. Rev. Lett. 25:316 (1970).
- E.L. Berger and S.J. Brodsky, Quark Structure Functions of Mesons and the Drell-Yan Process, Phys. Rev. Lett. 42:940 (1979); E.L. Berger, Higher-Twist Effects in QCD, Deep Inelastic Scattering, and the Drell-Yan Process, Z. Phys. C 4:289 (1980).
- 5. K.J. Anderson et al., Evidence for Longitudinal Photon Polarization in Muon-Pair Production by Pions, Phys. Rev. Lett. 43:1219 (1979).
- 6. C. Biino et al., An Apparatus to Measure the Structure of the Pion, Nucl. Instr. Meth. A243:323 (1986).
- 7. S. Palestini et al., Pion Structure as Observed in the Reaction $\pi^- N \to \mu^+ \mu^- X$ at 80 GeV/c, Phys. Rev. Lett. 55:2649 (1985).
- 8. G. Altarelli, R.K. Ellis, and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. **B157**:461 (1979); J. Kubar *et al.*, QCD Corrections to the Drell-Yan Mechanism and the Pion Structure Function, Nucl, Phys. **B175**:251 (1980).
- 9. For details of the continuum analysis see: J.S. Conway, Ph.D. Dissertation, U. of Chicago (1987).
- 10. J. Badier et al., Experimental Determination of the π Meson Structure Functions by the Drell-Yan Mechanism, Z. Phys. C 18:281 (1983).
- 11. H. Abramovicz et al., Neutrino and Antineutrine Charged-Current Inclusive Scattering in Iron in the Energy Range $20 < E_{\nu} < 300 \text{ GeV}$, Z. Phys. C 17:283 (1983).
- 12. D.B. McFarlane et al., Nucleon Structure Functions from High Energy Neutrino Interactions with Iron and QCD Results, Z. Phys. C 26:1 (1984).
- 13. B. Betev et al., Observation of Anomalous Scaling Violation in Muon Pair Production by 194 GeV/c π^- -Tungsten Interactions, Z. Phys. C 28:15 (1985).
- 14. A.J. Buras and K.J.F. Gaemers, Simple Parametrization of Parton Distributions with Q^2 Dependence Given by Asymptotic Freedom, Nucl. Phys. **B132**:249 (1978).
- 15. R.J. Oakes, Muon Pair Production in Strong Interactions, Nuovo Cimento 44A:440 (1966).
- 16. C.S. Lam and W.-K. Tung, Parton-Model Relation without Quantum-Chromdynamic Modifications in Lepton Pair Production, Phys. Rev. D 21:2712 (1980).
- 17. S. Falciano et al., Angular Distribution of Muon Pairs Produced by 194 GeV/c Negative Pions, Z. Phys. C 31:513 (1986).
- 18. C. Biino et al., J/ψ Longitudinal Polarization from πN Interactions, Phys. Rev. Lett. 58:2523 (1987).