THE RELATION BETWEEN ELECTRODISINTEGRATION AND PHOTODISINTEGRATION OF HELIUM-3*

Kirk McDonald

California Institute of Technology

July 14, 1971

^{*}Work supported in part by the U.S. Atomic Energy Commission.

In this paper we investigate the possibility of extracting information about photodisintegration of Helium-3, $\gamma + \mathrm{He}^3 \to \mathrm{p} + \mathrm{d}$, from the reaction $\mathrm{e} + \mathrm{He}^3 \to \mathrm{e}^{\mathrm{t}} + \mathrm{p} + \mathrm{d}$. If the latter reaction involves the exchange of a single photon, we may consider the reaction to take place in two steps: $\mathrm{e} \to \mathrm{e}^{\mathrm{t}} + \gamma$ followed by $\gamma + \mathrm{He}^3 \to \mathrm{p} + \mathrm{d}$. The second step is called virtual photodisintegration since the photon is off the mass-shell. Hence an extrapolation to real photodisintegration is necessary.

If the final state electron and proton are detected in the reaction $e + He^3 \rightarrow e^1 + p + d$, we may write (in the one-photon approximation):

$$\frac{d^3\sigma}{dE_e \cdot d\Omega_e \cdot d\Omega_p} = \Gamma \frac{d\sigma}{d\Omega_p}$$

I is the virtual photon spectrum factor given by

$$\Gamma = \frac{\alpha}{2\pi^2} \frac{E_e}{E_a} \frac{K}{q^2} \frac{1}{1-\epsilon}$$

where

$$q^2 = 4E_e E_{e'} \sin^2 \frac{\theta_{e'}}{2} = -(4-momentum transfer)^2$$
,
$$K = \frac{W^2 - M_{He}^2}{2M_{e'} 3} = Real photon energy needed to produce the p+d final state,$$

$$W = (M_{He}^2 + 2v M_{He}^3 - q^2)^{1/2} = Mass of p+d system,$$

$$v = E_e - E_{e'}, \qquad ,$$

$$\varepsilon = 1/(1 + 2(1 + v^2/q^2) \tan^2 \frac{\theta_{e'}}{2}) = \text{Polarization parameter.}$$

The virtual photodisintegration cross-section can be further expressed

$$\frac{d\sigma}{d\Omega_{p}} = A + \epsilon B \sin^{2}\theta_{p} \cos 2\phi + \epsilon C + \sqrt{\epsilon(1+\epsilon)} D \sin\theta_{p} \cos\phi \qquad ,$$

where

 θ_p = Proton angle in the γ-He 3 c.m. frame. ϕ = Angle between the plane $e \rightarrow e' + \gamma$ and the plane $\gamma + \text{He}^3 \rightarrow p + d$.

A, B, C, and D are functions of q^2 , W and θ_p . See the Appendix for comments on the derivation of the above expressions. In the limit of $q^2 \to 0$

$$A \rightarrow \frac{d\sigma_{\parallel}}{d\Omega_{p}} + \frac{d\sigma_{\perp}}{d\Omega_{p}}$$
$$B \rightarrow \frac{d\Omega_{\parallel}}{d\Omega_{p}} - \frac{d\Omega_{\perp}}{d\Omega_{p}}$$

 $C \rightarrow 0$

 $D \rightarrow 0$

where $\frac{d\sigma_L}{d\Omega_p}$ and $\frac{d\sigma_H}{d\Omega_p}$ are the cross-sections for photodisintegration by real polarized photons.

The only data for $e + He^3 \rightarrow e' + p + d$ is that of Johansson 1).

$$E_{e} = 550 \text{ MeV} \qquad E_{e'} = 443 \text{ MeV} \qquad \theta_{e'} = 51.7^{\circ}$$

$$\theta_{p}(\text{LAB}) = \qquad \qquad 44.2^{\circ} \quad 51.7^{\circ} \quad 56.7^{\circ} \quad 62.0^{\circ}$$

$$\frac{d^{3}\sigma}{dE_{e'} \quad d\Omega_{e'} \quad d\Omega_{p}} \left(\frac{10^{32}\text{cm}^{2}}{\text{Sr MeV}}\right) \qquad \qquad 29.6 \quad 7.32 \quad 5.17 \quad 0.88$$
Statistical Error (%) = \qquad 15 \quad 6.3 \quad 11 \quad 41

$$\nu = 105 \text{ MeV}$$
 $q^2 = 1.85 \times 10^5 \text{ MeV}$ $K = 74 \text{ MeV}$ $\epsilon = .667$ $\Gamma = 3.57 \times 10^{-7} \text{ MeV}^{-1}$

Note that the data were taken at only a single q^2 , making the extrapolation to $q^2=0$ rather uncertain. The effective real photon energy, 74 MeV, is well below the region of N* production in γ + He 3 \rightarrow p + d .

To compare these data to those for γ + He 3 \rightarrow p + d we need to cast the p+d system into the γ -He 3 c.m. frame. The lab angle of the photon is

$$\theta_{\gamma} = \tan^{-1} \left(\frac{E_{e^1} \sin \theta_{e^1}}{E_{e^{-1}} \cos \theta_{e^1}} \right) = 51.6^{\circ}$$

Thus the data for γ + He 3 \rightarrow p + d will be all in the forward direction. The results of the LAB to c.m. transformation are

θ _p (LAB)	θ _p (c.m.)		$\frac{d\Omega_{p}(LAB)}{d\Omega_{p}(c.m.)}$	$\frac{1}{\Gamma} \cdot \frac{d^3\sigma}{dE_{e'} d\Omega_{e'}} d\Omega_{p}(c.m.)$
51.7	0.15	0°	.430	1.7 x 10 ⁻²⁷
56.7	7.8	0°	.431	1.2
44.2	11.3	180°	.433	6.7×10^{-26}
62.0	15.8	0°	.436	2.0

We can now make estimates of the functions A, B, C, and D mentioned above. Because of the small θ_p involved I neglect B and D. Also, the $\theta_p(\text{LAB}) = 44^{\circ}$ data show that a term in $\cos\phi$ cannot be very important. For term A, which is the cross-section for photodisintegration due to transversely polarized photons (see Appendix), we approximate $A(q^2) = A(0)$. This is indicated

by experience with e-p inelastic scattering²⁾. Term C is related to the cross-section for longitudinally polarized photons by

$$C = \frac{q^2}{q_o^2} \frac{d\sigma_L}{d\Omega}$$

where q_o is the energy of the photon in the $\gamma\text{-He}^3$ c.m. frame. For the present case $q^2/q_o^2=116$. Thus even if $\frac{d\sigma_T}{d\Omega} \sim \frac{d\sigma_L}{d\Omega}$, term C could be dominant.

The experimental data nearest to $E_{\gamma}=74$ MeV is that of O'Fallon et al. reported by Carron³⁾. The data are characterized by an order of magnitude of $10^{-30}~{\rm cm}^2/{\rm Sr}$ for the cross-section, which shows a marked forward dip. This is rather spectacularly different from the virtual photon cross-sections found above.

To get a more quantitative comparison between real and virtual photodisintegration, I have done a simple partial wave analysis. I assume the He³ and d ground state wave functions to be pure S-waves. The only important electromagnetic transitions at the fairly low energy under consideration are

E1
$$\Rightarrow {}^{2}P_{3/2}$$
, ${}^{2}P_{1/2}$
M1 $\Rightarrow {}^{4}S_{3/2}$
E2 $\Rightarrow {}^{2}D_{5/2}$, ${}^{2}D_{3/2}$

where S, P, D label the relative p-d angular momentum, etc. Further, the 2 electric dipole amplitudes should be equal, and the 2 electric quadrupole amplitudes should also be equal. Thus there are only 3 amplitudes to consider, which I call S, P and D. Then

$$\frac{d\sigma_{\rm T}}{d\Omega} \sim s^2 + \sin^2\theta (3r^2 + 2\sqrt{6} \text{ Re P}^* D \cos\theta + 2 D^2 \cos^2\theta)$$

$$\frac{d\sigma_L}{d\Omega} \sim \frac{1}{3} s^2 + 3p^2 + \frac{2}{3} p^2 + \sqrt{2} Re p^* D \cos\theta +$$

$$+ \sin^2 \theta (-3P^2 - \frac{1}{2} D^2 + \frac{3}{2} \sqrt{2} \text{ Re } P^* D \cos \theta - \frac{3}{2} D^2 \cos^2 \theta)$$
.

A fit to the O'Fallon data, interpolated to 74 MeV is

$$\frac{d\sigma_{T}}{d\Omega} = (0.4 \pm 0.6 \sin^{2}\theta + 1.33 \sin^{2}\theta \cos\theta + 1.0 \sin^{2}\theta \cos^{2}\theta) \times 3 \times 10^{-30} \text{ cm}^{2}/\text{Sr}$$

Then

$$\frac{d\sigma_{L}}{d\Omega} = (1.0 + 0.4 \cos\theta - 0.85 \sin^{2}\theta + 0.6 \sin^{2}\theta \cos\theta - 0.75 \sin^{2}\theta \cos^{2}\theta) \times 3 \times 10^{-30}$$

Note that $d\sigma_L^{}/d\Omega_{}^{}$ is peaked in the forward direction.

If we estimate $\frac{1}{\Gamma} d^3 \sigma / dE_e$, $d\Omega_e d\Omega_p$ by

$$\frac{q^2}{q^2} \frac{d\sigma_L}{d\Omega}$$
,

we get $3.3 \times 10^{-28} \ \text{cm}^2/\text{Sr}$ at 0° , a factor of 5 below the electrodisintegration data. The angular dependence of the fit for σ_L is not rapid enough to match the forward peak seen in the electrodisintegration: at 15.8° we have $3 \times 10^{-28} \ \text{cm}^2/\text{Sr}$.

Thus the attempt to relate real to virtual photodisintegration of ${\rm He}^3$ has been only qualitatively successful. The dominance of σ_L over σ_T combined with the uncertainty of the extrapolation to ${\rm q}^2$ = 0 do not allow any precise constraint to be placed on real photodisintegration amplitudes by means of virtual photodisintegration data.

APPENDIX

In this Appendix we outline the decomposition of electrodisintegration into virtual photodisintegration. This is taken mainly from Reference 4; see also Reference 5.

The basic cross-section for electrodisintegration is

$$d\sigma = \frac{1}{V_e} \frac{1}{2E_e} \frac{1}{2M_H} \frac{1}{(2\pi)^5} \frac{d^3 \overrightarrow{P}_e}{dE_e} \frac{d^3 \overrightarrow{P}_p}{dE_e} \frac{d^3 \overrightarrow{P}_d}{2E_d} \sum_{\text{spins}} |M|^2$$

e = Incident electron

e' = Recoil electron

 $H = He^3$

p = Proton

d = Deuteron .

We neglect the mass of the electron.

 $M=\frac{1}{k^2}\ j_\mu\ J_\mu \ \text{is the matrix element in the one-photon exchange approximation}$ where k_μ is the virtual photon 4-vector.

$$\sum_{\text{spins}} \left| \mathbf{M} \right|^2 = \frac{1}{k^4} \frac{1}{2} \sum_{\substack{\text{electron} \\ \text{spins}}} \mathbf{j}_{\mu} \mathbf{j}_{\nu}^{+} \frac{1}{2} \sum_{\substack{\text{hadron} \\ \text{spins}}} \mathbf{J}_{\mu} \mathbf{J}_{\nu}^{+} \equiv \frac{1}{k^4} \mathbf{L}_{\mu\nu} \mathbf{T}_{\mu\nu}$$

 $L_{\mu\nu}$ is well-known:

$$L_{\mu\nu} = 8\pi\alpha (e_{\mu} e_{\nu}^{\dagger} + e_{\nu} e_{\mu}^{\dagger} + \frac{k^2}{2} \delta_{\mu\nu}) \equiv 8\pi\alpha \ell_{\mu\nu}$$

We can now separate the cross-section into electron and hadron parts:

$$d\sigma = \begin{bmatrix} \frac{\alpha}{4\pi^2} & \frac{E_{e'}}{E_{e}} & dE_{e'} & d\Omega_{e'} & \frac{\ell_{\mu\nu}}{k^{4}} \end{bmatrix} \bullet \begin{bmatrix} \frac{1}{2M_H} & \frac{1}{(2\pi)^2} & \frac{d^3p}{2E_p} & \frac{d^3p}{2E_d} & T_{\mu\nu} \end{bmatrix}$$

The second bracket would be the cross-section for photodisintegration if it also contained the factor

$$\frac{1}{V(\gamma-He^3)_{REL}} \cdot \frac{1}{2E_{\gamma}} = \frac{k_o}{|\vec{k}|} \frac{1}{2k_o} = \frac{1}{2|\vec{k}|}$$

This introduces a factor $2|\vec{k}|$ into the left bracket. $|\vec{k}|$ is a function of $k^2(=-q^2)$ and its physical significance is unclear. We replace it by

$$K = \frac{W^2 - M_H^2}{2M_H} \qquad ,$$

following Hand 6). K and $|\vec{k}|$ approach each other as k^2 goes to zero, but K is independent of k^2 .

 $\ell_{\mu\nu}$ carries the information about the polarization of the virtual photon. The polarization deisity matrix, $\epsilon_{\mu\nu}$, is related by

$$\frac{\varepsilon_{\mu\nu}}{1-\varepsilon} = \frac{1}{q^2} \ell_{\mu\nu} ,$$

where ϵ is the polarization parameter mentioned previously. The separation of $1/(1-\epsilon)$ out of $\epsilon_{\mu\nu}$ is a convention suggested by the explicit evaluation of $\ell_{\mu\nu}$. The factor q^2 is needed to normalize $\epsilon_{\mu\nu}$.

Now we have

$$d\sigma = \frac{\alpha}{2\pi^2} \frac{E_e}{E_e} \frac{K}{q^2} \frac{1}{1-\epsilon} dE_e d\Omega_e, \quad \left[\frac{1}{2K} \frac{1}{2M_H} \frac{1}{(2\pi)^2} \frac{d^3\vec{P}_p}{2E_p} \frac{d^3\vec{P}_d}{2E_d} \epsilon_{\mu\nu} T_{\mu\nu}\right]$$

We note that we need only be concerned with the spatial components of $\epsilon_{\mu\nu}$ and $T_{\mu\nu}$ by invoking current conservation

$$k_{\mu} j_{\mu} = 0$$
 $k_{\mu} J_{\mu} = 0$,

or

$$j_o = \frac{\vec{k} \cdot \vec{j}}{k_o} \qquad \qquad j_o = \frac{\vec{k} \cdot \vec{j}}{k_o}$$

In the $\gamma\text{-He}^3$ c.m. frame, k_z is the only non-zero component of $\vec k$, choosing the z axis in the photon's direction. Thus

$$- j_{\mu} J_{\mu} = j_{x} J_{x} + j_{y} J_{y} + \frac{k^{2}}{k_{o}^{2}} j_{z} J_{z}$$

We can write $\epsilon_{\mu\nu} T_{\mu\nu} = \epsilon_{ij} T_{ij}$ provided the z-components of ϵ_{ij} are k^2/k_o^2 times those of $\epsilon_{\mu\nu}$ (so ϵ_{zz} is k^4/k_o^4 times that of $\epsilon_{\mu\nu}$). An evaluation of ϵ_{ij} in the γ -He³ c.m. frame gives

$$\varepsilon_{ij} = \begin{pmatrix} (1+\varepsilon)/2 & 0 & \sqrt{\varepsilon_{L}(1+\varepsilon)/2} \\ 0 & (1-\varepsilon)/2 & 0 \\ \sqrt{\varepsilon_{L}(1+\varepsilon)/2} & 0 & \varepsilon_{L} \end{pmatrix}$$

where $\epsilon_L = \frac{q^2}{k_0^2} \epsilon$ and ϵ is given as before in terms of laboratory quantities. The axes are chosen with the photon in the +z direction, and the plane of interaction as the x-z plane. If ϵ_L were zero, the remaining ϵ_{ij} would be the density matrix for a photon beam with $(1+\epsilon)/2$ of the photons polarized in the x-direction, and $(1-\epsilon)/2$ in the y-direction. Hence the description of ϵ as the amount of transverse linear polarization.

We can now write the electrodisintegration cross-section as

$$d^2\sigma/dE_{e'}$$
 $d\Omega_{e'} = \Gamma d\sigma_{\gamma}$

with I as given above and

$$d\sigma_{\gamma} = (d\sigma_{xx} + d\sigma_{yy})/2 + \epsilon(d\sigma_{xx} - d\sigma_{yy})/2 + \epsilon_{L} d\sigma_{zz} + \sqrt{2\epsilon_{L}(1+\epsilon)} d\sigma_{xz}$$

using the fact that T_{ij} is symmetric. In another common notation

$$d\sigma_{xx} = d\sigma_{ij}$$

$$d\sigma_{yy} = d\sigma_{L}$$

$$d\sigma_{zz} = d\sigma_{L}$$

To exhibit the angular factors in do $_{\gamma}$ mentioned in the main text, we need to convert from spatial polarizations to helicities:

$$|x\rangle = -(|+\rangle - |-\rangle)/\sqrt{2}$$
 $|y\rangle = i(|+\rangle + |-\rangle)/\sqrt{2}$ $|z\rangle = |0\rangle$

$$d\sigma_{\gamma} = (d\sigma_{++} + d\sigma_{--})/2 - \epsilon d\sigma_{+-} + \epsilon_{L} d\sigma_{oo} + \sqrt{\epsilon_{L}(1+\epsilon)} (d\sigma_{+o} - d\sigma_{-o})$$

Note that $d\sigma_{\mbox{$\lambda$}\mbox{$\mu$}}$ is the sum of terms like

$$<_{p,d}|s^{\dagger}|_{\gamma_{\lambda}}$$
, $\text{He}^{3}><_{\gamma_{\mu}}$, $\text{He}^{3}|s|_{p,d}>$,

where the p,d and He 3 have the same helicities in both amplitudes, but the photons have helicities λ and μ . The angular dependence of $d\sigma_{\lambda\mu}$ is then a sum of terms like

$$Y_{\ell,m}^{*}(\theta,\phi) \cdot Y_{\ell^{\dagger},m+\lambda-\mu}(\theta,\phi)$$

Hence $d\sigma_{++}$, $d\sigma_{00}$, and $d\sigma_{--}$ have no particular θ or ϕ dependence. However, $d\sigma_{+-}$ will have a factor $\sin^2\theta \cos^2\phi$ and $d\sigma_{+0}$, $d\sigma_{-0}$ will have $\sin\theta \cos\phi$. Thus we can also write

$$d\sigma_{\gamma} = A + \varepsilon B \sin^2 \theta \cos^2 \phi + \varepsilon C + \sqrt{\varepsilon (1+\varepsilon)} D \sin \theta \cos \phi$$

where

$$A = (d\sigma_{\parallel} + d\sigma_{\perp})/2$$

$$B \sin^2 \theta \cos^2 \phi = (d\sigma_{\parallel} - d\sigma_{\perp})/2$$

$$C = q^2/k_o^2 d\sigma_{\perp}$$

REFERENCES

- A. Johansson, Phys. Rev. <u>136</u>, B1030 (1964).
- E.D. Bloom, R.L. Cottrell, D.H. Coward, H. De Staebler, Jr., J. Drees, G. Miller, L.W. Mo, R.E. Taylor, J.I. Friedman, G.C. Hartmann, and H.W. Kendall, SLAC-PUB-963 (Sept., 1969).
- 3. N.J. Carron, Phys. Rev. <u>168</u>, 1095 (1968).
- 4. C.W. Akerlof, W.H. Ash, K. Berkelman, C.A. Lichtenstein, A. Ramanauskas, and R.H. Siemann, Phys. Rev. <u>163</u>, 1482 (1967).
- 5. Norman Dombey, Reviews of Modern Physics 41, 236 (1969).
- 6. L.N. Hand, Phys. Rev. <u>129</u>, 1834 (1963).
- 7. A $\sin^2\theta$ factor appears explcitly in $\sigma_0 \sigma_1$ for $\gamma + \text{He}^3 \to p + d$ as calculated in my paper, "Photodisintegration of He³ by Polarized Gamma Rays", August 7, 1970 (unpublished).