fraction solutions has found nontrivial and extremely elegant
applications in analyzing the dynamics of an anisotropic
Heisenberg model on a lattice of infinite dimensions (the
so-called spin van der Waals model),!! a quasi-two-
dimensional electron gas,'? spin-dynamics problems,'? etc.
In a very well defined sense, each of these problems is best
analyzed in terms of continued fractions. Finally, the method
of recurrence relations in many-body dynamics reveals a
subtle intellectual achievement, exciting realistic hopes that,
in the words of M. Howard Lee, ‘‘there are simple solutions
lurking amidst impossibly complicated problems.”
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Answer to Question #43. The Fokker—Planck equation

Neuenschwander’s question [Am. J. Phys. 64 (6), 681
(1996)] seeks a convincing application of the Fokker—Planck
equation for presentation to undergraduates. Its use to de-
scribe the motion of positrons in a medium in the presence of
an impressed electric field is suitable for students at this
level; where to introduce it in the syllabus may be a bit
problematic. I use it in a course on computational physics.

Three distinct mechanisms can be identified which affect
the local density of particles in a time Af: diffusion, Ap
=div(D grad p)At, where the diffusion current is j
= —D grad p, and D is the local diffusion constant; convec-
tion, which superimposes a net directed motion on this drift
with Ap=—div(vp)At, where v is the local drift velocity of
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the particles; and annihilation of electrons in the medium,
which serves to remove particles from the population with
Ap=— upAt, where u is the probability of annihilation per
unit time or the reciprocal of the local lifetime against anni-
hilation. By combining these three contributions we find for
the local time rate of change of p, in one dimension,

ap(x,t) 48 (D(x) ap(x,t)

ot T ox ox

— p(x)p(x,1) +8(x,1).

The great generality of the equation, which can accommo-
date an inhomogeneous medium and/or field, for which D, v,
and u depend on position, can be seen, as well as the possi-
bility of a term corresponding to the spontaneous creation of
particles at x at a rate S(x,¢) per unit volume per unit time—
such as could occur with a positron population in the pres-
ence of energetic 7y rays.

A similar analysis could be applied to cosmic rays in su-
pernovae envelopes, or in interstellar space, but may be
somewhat remote from the undergraduate syllabus.

d
)—5 (v(@)p(x.0)

P. Kevin MacKeown
Department of Physics

The University of Hong Kong
Hong Kong

Answer to Question #52. Group velocity and energy
propagation

Awati and Howes [Am. J. Phys. 64 (11), 1353 (1996)] ask
for a general proof of the relationship between group veloc-
ity and the velocity of energy propagation.

It seems that the concept of group velocity was first enun-
ciated by Hamilton in 1839 in published abstracts of works
that never appeared. Hamilton considered a wave cos(kx

- —wt) defined only for negative x at =0 and incident on a

dispersive medium that occupies the region x>0. He con-
cluded “‘that the velocity with which such vibration spreads
into those portions of the vibratory medium which were pre-
viously undisturbed is in general different for the velocity of
passage of a given phase from one particle to another within
that portion of the medium which is already fully agitated;
since we have velocity of transmission of phase=w/k but
velocity of propagation of vibrating motion=dw/dk.”’ How-
ever, these results were largely ignored.

The group-velocity concept became widely known after
being (re)introduced by Stokes. in 1876 in a hydrodynamic
context, and the greater generality of the concept emphasized
by Rayleigh in 1877 in Sec. 191 of his book The Theory of
Sound. The early history of the group-velocity concept is
well summarized in the book The Propagation of Distur-
bances in Dispersive Media by T. H. Havelock (Cambridge
U.P., Cambridge, 1914).

I give two answers to the question of how one knows that
wave energy propagates with the group velocity, both of
which are ‘‘standard’’ and sufficient to my taste. The discus-
sion will be restricted to wave motion along the x axis for
brevity.

(1) The total energy E associated with a wave of ampli-
tude f(x,r) at a time ¢ can in general be written
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E(1)= f (Af2+Bf?)dx,

where f=df/dt and either of A or B might be zero depending
on the physical system. Typically, the term A f? is associated
with energy stored in the wave medium due to the strain of
the wave while B fz is the kinetic energy of the medium due
to the wave motion. For example, B=0 for an electromag-
netic wave while A=0 for the granular systems recently
studied by Swinney ef al. [Nature 382, 793 (1996)].

Question #52 arises when one wishes to interpret the
quantity Af2+Bf? as an energy density. As the wave
changes with time it is possible that the energy moves in
space. If the wave amplitude has the form of a travelling
wave, f(x—vt), then both £ and fz are functions of a single
variable, x — v, and the energy can be said to be propagating
with velocity v.

The concept of group velocity arises when a waveform is
Fourier analyzed into a set of harmonic waves

flx,0)= f F(k)e' =g,

characterized by wave number & and frequency w(k) where
the latter relation can be nontrivial due to dispersion in the
wave medium. The harmonic wave of frequency w has phase
velocity v, = w/k which is not necessarily equal to the ve-
locity v of the localized waveform. (In this discussion only
the real part of f has physical significance.)

The spectral function F(k) can be determined by the Fou-
rier inverse relation for the wave at a fixed time, say 1=0:

F(k)=2—17-r- j f(x,0)e " **dx.

However, we don’t need to use this result in the present case.

The usual argument asks us to restrict our attention to
waveforms whose spectral function F(k) is narrow enough
that the dispersion relation can be approximated as

dw(ko)
dk

the leading terms in a Taylor expansion about some central
wave number k. (The sign of k, determines whether the
pulse moves in the +x or —x direction.) Certainly this ap-
proximation breaks down for very short pulses in highly dis-
persive media. In this approximation we have

w=w(ko)+ (k—ko),

f(x,t) — ei[ko(dw(ko)/dko—wo]tf F(k)eik[x—(dw(ko)/dk)t]dk

= e'tholdalkoldko=wollf(x —(dw(ky)/dk)t,0).

That is, to within a phase factor of unit modulus, the wave-
form f(x,r) is a function of a single variable, x
—(dw(ky)/dk)t, and so can be said to propagate with ve-
locity

dw(kg)
Ugroup™ _d—lz—- »

the group velocity. As argued above, the energy then propa-
gates with this velocity as well.

If the waveform is highly localized in space it will have a
broad spectral content and the linear approximation to the
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dispersion relation may not suffice. If so, the waveform will
change shape (disperse) as it propagates and the group ve-
locity is not well defined.

This well-known argument appears to be due to Lord
Kelvin [Proc. R. Soc. London XLII, 80 (1887)], and is re-
produced in much the above form in Sec. 3 of the book by
Havelock. :

(2) In 1877 both Reynolds and Rayleigh published article
relating energy flow to group velocity. Reynolds’s discussion
is based on water waves and can be found in Sec. 273 of the
book Hydrodynamics by H. Lamb, as well as in Sec. 26 of
Mechanics of Deformable Bodies by A. Sommerfeld (1946).

Rayleigh’s argument has been reprinted in the Appendix
to Vol. 1 of his book The Theory of Sound and is based on
the general observation that dispersion in a physical system
is always accompanied by absorption. While the latter can
often be ignored as a first approximation, it should not be left
out of discussions of energy flow.

Here I repeat Rayleigh’s argument, which seems to be less
well known than Kelvin’s.

A pure harmonic wave, ¢ , s incident on a disper-
sive medium that occupies the half space x>0. Because of
absorption in the medium, this wave dies out over some
characteristic distance d. To find that distance, we suppose
that in the absence of absorption the harmonic solutions obey
a known dispersion relation, k=k(w). Then the equation of
motion including absorption, taken to be velocity dependent,
differs from that without absorption only by replacing the
second time derivative 9°/d¢> with the form

i(kx— wt)

02+ 3
a2 "7 5

where 7y, whose dimensions are 1/time, characterizes the ab-
sorption process. The new dispersion relation that results on
inserting our trial harmonic solution into the wave equation
differs only in the term w? being replaced by w?+iyw. For
weak absorption this is equivalent to replacing w by w
+ivy/2. The corresponding wave number is therefore k(w
+iyl2)~k(w)+i(y/2)(dk/dw), again ignoring terms of or-
der ¥*. The wave solution in the presence of absorption is
therefore approximately

e ( 'y/2)(dk/dw)xei(kx— wt)‘

Thus the characteristic attenuation length is

2dow
d= T
For a steady wave, energy is being transported into the me-
dium at the same rate at which it is being absorbed, when
averages are taken over a whole cycle of the wave. The
power P absorbed by a mass m in the medium is P=F v,
where v is the velocity of the mass and F= ymuy the dissi-
pative force. Thus P=ymv?, and summing over all masses
in some region, P=2yT, where T is the kinetic energy. Tak-
ing the time average, (P)=2y(T)= yE, where E is the total
energy. In writing E=2(T) we suppose that the wave mo-
tion is a small departure from equilibrium so the restoring
forces can be described by a quadratic potential, for which
E=2(T) according to the virial theorem of classical me-
chanics.

The time-averaged power absorbed for x>x, in the me-
dium is then
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s e L2
X0 dk

where C is a constant that relates the square of the nonoscil-
latory part of the wave amplitude to its time-averaged energy
density. The virial theorem assures us that constant C exists.

The (time-averaged) rate of energy flow across the plane
x=x, is the (time-averaged) energy density there times the
desired velocity of energy flow, vg. This product is just
Cuge ™04 noting the meaning of constant C.

Hence the velocity of energy flow is

dw
UE=E=vgroup'

An objection to this argument would be that it doesn’t apply
if the absorption is too strong (and not if it is too weak as
implied in the statement of Question #52). It may be that the
heroic efforts of Sommerfeld and Brillouin [Ann. Phys.
(1914); see also, for instance, Max Born and Emil Wolf,
Principles of Optics and Léon Brillouin, Wave Propagation
and Group Velocity] to clarify signal propagation in the case
of highly absorptive anomalous dispersion in optical media
(where v gy, exceeds the speed of light) have left the im-
pression that the more ordinary case is similarly intricate.

Kirk T. McDonald

Joseph Henry Laboratories
Department of Physics
Princeton University

P.O. Box 708

Princeton, New Jersey 08544

Answer to Question #52. Group velocity and energy
propagation

K. M. Awati and T. Howes have asked for a general proof
that the energy propagation in a dispersive medium is at the
group, and not the phase, velocity. This is an interesting
issue because it requires a broader understanding of wave
energy than simply the electromagnetic component. It was
originally pointed out by Max von Laue in 1905' that in a
dispersive medium the kinetic energy of the oscillators as
well as the field energy must be considered. The discussion
was subsequently pursued by numerous authors leading to a
general formulation of the total energy of a slightly damped
wave in a dispersive medium, particularly a plasma.z‘7 Most
of these treatments are based only on Maxwell’s equations
with a conductivity introduced to account for the particles.
Without an explicit identification of the particle energy con-
sidered as coherent with the wave, however, the treatment is
incomplete. Allis et al. do identify this energy for a cold
plasma.® I carried out a complete description for a fully ion-
ized hot plasma.® At that time, considerations of this problem
were also being pursued by the group at G&iteborg.9

If one does not ask about the actual identity of the coher-
ent particle energy, to show that the total wave energy must
propagate at the group velocity is fairly straightforward. A
dispersive medium is one in which there is a time damping
and spatial dispersion of an electromagnetic wave. From
Maxwell’s equations it is clear that such a medium must
contain charges and be capable of producing currents. The
presence of these charges is accounted for by introducing a
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conductivity, o. The wave disturbances in such a medium are
those with  time and spatial dependence of the form

Re{f(lz,w)exp[iwt—ilz-r:]}, 1)

where f(k,w) is any of the field or particle quantities of
interest. In an isotropic medium the (complex) conductivity,
o(k,w), is a scalar. The necessary condition for the exis-
tence of such disturbances is

det{ D (k,)} =0, 2
with
B(Ig,w)EI;I;+(w2MOEO—k2)f—iw,u,ocrr. (3)

To be considered as propagating in the medium, these dis-
turbances, Eq. (1), must exist over a large number of wave-
lengths. That is, the imaginary parts of k and w must be
small. If one performs an expansion in small imaginary parts,
the time average of the field energy equation produces

0, U+(—k)[U gradi(w)]=—o,E?, 4)
where
Jo;
U=Uem~~—E 5)

is the total energy of the wave disturbance, and o, and o; are
the real and imaginary parts of the conductivity. In (5) U, is
the electromagnetic energy density in the wave, and the sec-
ond term in U is that identified as the coherent particle ki-
netic energy. The term multiplied by w; in (4) is the time
derivative of the total energy and that involving the scalar

product with k; is the divergence of the flux of total energy.
The right-hand side of (4) then represents the loss rate of this
total energy to the background dispersive medium. This is
the degradation of the coherent particle energy component of
U into (noncoherent) thermal energy.

An important step in obtaining (4) is to consider the form
of the electrical conductivity for the slightly damped wave.
Expanding around the undamped condition, the conductivity
is

- 0 -
olk,w)~(io;)+iw; T (io;)+ik; gradi(io;) to,.
(6)

1t is easy to show that the conductivity must be purely imagi-
nary at the propagation condition.

The form of the flux term in (4) provides an answer to the
question asked. In a dispersive medium, a general (total)
Poynting vector must be considered. This is

S=U grad;(w), (7

where, of course, gradi(w) is the group velocity of the wave.

As satisfying as this is, the door has only been opened a
crack; the real problem is to identify the coherent particle
energy. In Ref. 8 this coherent energy is identified as the
standard hydrodynamic energy, quadratic in the current, plus
a part of the thermal energy related to particle density varia-
tions. An equally interesting question is the origin of the
damping represented by the real part of the complex conduc-
tivity. The form of this term depends on the thermodynamic
state of the background medium. Landau’s classic treatment
of the damping and excitation of Coulomb waves in a Vlasov
plasma is an example.'® Perhaps a more interesting question

Questions and Answers 658



