scale that best approximates the target just interval. Also, the
numerators of the principal convergents yield the number of
equal-tempered steps that correspond to the best approxima-
tion of the target just interval. Using other criteria and
algorithms,ﬁ'7 various authors have generated these same
ETS, but a direct comparison of equal-tempered scales must
be made to choose the one that best approximates the target
just interval.

Although continued fraction principal convergents with
large values of ¢ more closely approximate the harmonious
interval on which the scale is based, musically (especially for
fixed string length or fretted instruments), we would confine
our choices to relatively small values of q. With the advent
of computer music and synthesizers this consideration is less
important.

'Dwight E. Neuenschwander, *‘Question #4. Is there a physics application
that is best analyzed in terms of continued fractions?,”” Am. J. Phys. 62
(10), 871 (1994).

H. Helmholtz, in On the Sensation of Tone (Dover, New York, 1954),
Chaps. I and XVI (originally published 1885).

31. Douthett, R. Entringer, and A. Multhaupt, ‘“Musical Scale Construction:
The Continued Fraction Comporomise,”’ Utilitas Mathematica 42, 97-113
(1992).

4M. Schechter, ““Tempered Scales and Continued Fractions,”” Am. Math.
Monthly 87, 40-42 (1980).

SA. Ya Khinchin, Continued Fractions (The University of Chicago Press,
Chicago, 1992).

SR. J. Krantz and J. Douthett, ‘‘A. Measure of the Reasonableness of
Equal-Tempered Musical Scales,”” J. Acoust. Soc. Am. 95 (6), 3642-3650
(1994).

D. E. Hall, *‘Acoustical Numerology and Lucky Temperaments,”” Am. J.
Phys. 56 (4), 329-333 (1988).

Richard J. Krantz
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Answer to Question #34. What is the third law of
thermodynamics trying to tell us?

The question posed by Blau and Halfpap' has previously
been addressed by Landsberg® in an authoritative answer
based on thermodynamic arguments. Rather than pursue the
thermodynamic route again, we would like to elaborate more
on some of the microscopic aspects raised in the question
presentation’ since the third law is better understood in those
cases where molecular information on the system under con-
sideration is available. In this way, we are addressing the
general title of the original question rather than Particular
aspects of the two questions raised by the authors." It is our
belief that not only the answers but also the questions are
relevant in the understanding of the third law.

The elementary molecular models invoked in our statisti-
cal physics courses show that S/Nk<1 for T/T4<1 pro-
vided that we use the quantum rather than the classical de-
scription, where S is the entropy of the N particles system, k
is Boltzmann’s constant, T is the temperature, and T, is a
finite, characteristic temperature that can be obtained in
terms of the particular system properties. For a system of
non-interacting distinguishable spins in a magnetic field
modeling a paramagnetic solid, T, could be 1 K. For an
ideal Bose gas simulating some qualitative features of liquid
helium, T,~1 K. (For a photon gas, however, both § and N
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go to zero as T°, and then S/Nk=13.6 regardless of the tem-
perature of the system.) For an ideal Fermi gas representing
the free electron gas in a metal, Ty~ 10* K. Finally, for an
ideal gas of diatomic molecules, T, can take different values
within a very large range of temperatures depending on the
degree of freedom probed experimentally. Most of the above
temperatures are significantly higher than zero, and reflect
the properties of the spectrum of states available to the par-
ticles of the system and the average number of particles in
each state.

Statements like ‘‘the third law tells us that the entropy of
a pure substance is zero at 0 K’ and “‘at 0 K the system
should be in its lowest energy (ground) state and then S=0
according to Boltzmann’s law’’ are certainly very vivid and
useful, but might as well be supplemented with more empiri-
cal views. What both experimental data and the molecular
models used to explain these data tell us is that the entropy
of a system becomes exceedingly small for temperatures
lower than T, where T, is a finite temperature that de-
pends on the particular system considered.® Also, the number
of states accessible for a macroscopic system is given by
exp(S/k), and this number can still be relatively large com-
pared to unity* even when the entropy is negligible and
S/k<N~10*.

Historically, the third law was put forward at the begin-
ning of this century and thus no reference to quantum aspects
was made. We have emphasized above that some crucial
characteristics of the third law arise naturally only when the
molecular information available for the system under consid-
eration is used consistently within the quantum statistical
physics framework. However, since one of the salient fea-
tures of thermodynamics is its independence from particular
microscopic models, the molecular information is not in-
voked in this physical science. In this context, the third law
must be postulated as a separate law in order to explain the
experimental data gathered for all thermodynamic systems at
low enough temperatures.

'S. Blau and B. Halfpap, ‘‘Question #34. What is the third law of thermo-
dynamics trying to tell us?,”” Am. J. Phys. 64 (1), 13—14 (1996).

2p. T. Landsberg, ‘‘Answer to Question #34. What is the third law of
thermodynamics trying to tell us?,”” Am. J. Phys. 65 (4), 269-270 (1997).
3F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill,
New York, 1962), Chap. 3.

“See, e.g., G. V. Rosser, An Introduction to Statistical Physics (Ellis Hor-
wood, Chichester, 1982), Chap. 3 and problem 3.1.

Salvador Mafé and Juan de la Rubia
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Answer to Question #51. Applications of third-order
and fifth-order differential equations

Neuenschwander' asks about physics applications of third-
order and fifth-order differential equations. It was, of course,
Newton’s great insight that the causes of changes in motion
affect the second derivative of position. So it is rare that a
time derivative higher than the second occurs in the differ-
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ential equation of motion of a physical system. The well-
known example of the use of a third time derivative is in the
electromagnetic radiation reaction. See, for example, Erik J.
Bochove, ‘‘Unified derivation of classical radiation forces,”’
Am. J. Phys. 64 (11), 1419-1422 (1996) (the same issue of
the Journal in which the Question appeared!).

!Dwight E. Neuenschwander, ‘‘Question S1. Applications of third-order
and fifth-order differential equations,”” Am. J. Phys. 64 (11), 1353 (1996).

Kirk T. McDonald

Joseph Henry Laboratories
Department of Physics
Princeton University
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Answer to Question #51. Applications of third-order
and fifth-order differential equations

In regard to physics applications of higher odd-order dif-
ferential equations about which Neuenschwander inquires
[Am. J. Phys. 64 (11), 1353 (1996)], they are not quite as
rare as we think. In calculating the flow along a flat plate at
zero incidence in a uniform stream, although the boundary
layer equation is of the second order, the separated differen-
tial equation is the famous Blasius equation, £+ ff".! We
get a system of three third-order equations in a similar prob-
lem in boundary layer flows and wake problems in mag-
netofluid dynamics, one of which is the Blasius equation.’

Of more interest is the fact that a third-order partial dif-
ferential equation, the famous Korteweg-de Vries equation
u,tuu,+u,,,=0, is derived in the physical context of Water
surface gravity waves and ion acoustic waves in plasmas A
fifth-order KdV equation appears in evolut1onary equations
(using Schrodinger operators) in soliton theory.* A list of
higher-order equations appears in Zwillinger’s Handbook of
Differential Equations.’

Sophus Lie’s ‘‘Theorie der Transformatlonsgruppen
connects differential equations with group theory.® To every
linear differential equation of order n corresponds a finite
group of linear homogeneous transformations on » variables,
which has properties similar to those of the group of permu-
tations for an algebraic equation. There is a similarity here
with Felix Klein’s ‘‘Erlanger Programm’’ in geometry. A
geometry is categorized by the properties that remain invari-
ant under a given group of transformations. Similarly group
theory determines all the possible forms which are permis-
sible for the field equations due to the geometric relationshq;
between the geometric properties of space with the sources.
Unfortunately, I can’t find a current reference to show how a
given group of the physical transformation forces mostly
second-order partial differential equations.

11.. Rosenhead, Laminar Boundary Layers (Dover, New York, 1988), pp.
222-223,

2S. Pai, Modern Fluid Mechanics (Science Press, New York, 1981), pp.
302-304.

3E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cam-
bridge U.P., Cambridge, 1990), p. 7.

“P. G. Drazin and R. S. Johnson, Solitons, an Introduction (Cambridge
U.P., Cambridge, 1989), p. 102.
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3D. Zwillinger, Handbook of Differential Equations (Academic, Boston,
1989), pp. 128-129, 132-136.

®L. N. Sneddon, Encyclopaedic Dictionary of Mathematics for Engineers
and Applied Scientists (Pergamon, Oxford, 1976), pp. 428—431.

"E. T. Bell, Development of Mathematics (McGraw-Hill, New York, 1945),
2nd ed., pp. 436 and 443.
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Answer to Question #62. When did the indeterminacy
principle become the uncertainty principle?

The answer is: almost right from the beginning. It was
called the “uncertamty principle’’ long before Peter Berg-
mann’s 1942 text! cited by William D. Harris.? Use of the
name ‘‘indeterminacy principle,”’ as found in Bergmann’s
text, has been infrequent in the United States since as early
as 1929.

The story has several interesting twists. In the March 1927
paper3 in which he first derived what we usually call the
uncertainty relations, Heisenberg never used the German
word for ‘‘indeterminacy,”” Unbestimmtheit. He referred in-
stead to the Ungenauigkeit, inexactness, in measurements of
canonically conjugate variables in quantum mechanics.
However, in an appendix added to the page proofs of the
paper, in which he refers to further discussions with Niels
Bohr, Heisenberg did use the word Unsicherheit, uncer-
tainty, for the first time, but it was also the only time he used
‘‘uncertainty’’ in that period.

Although Bohr and Heisenberg spoke Danish together,
since Heisenberg was fluent in Danish by 1927, Bohr was
apparently the source of the word ‘‘uncertainty’’ as used
then by Heisenberg (in equivalent German) and ever since
then 1n English- language literature. This is suggested by a
paper* Bohr presented in English six months later to an in-
ternational meeting of physicists at Lake Como, Italy, com-
memorating the centenary of the death of Alessandro Volta.
The paper reached English-language audiences in Nature
soon afterward. Here Bohr used the word ‘‘uncertainty’’
throughout, and in a recently published English draft manu-
script related to this lecture Bohr referred to Heisenberg’s
1nequa11tles for the first time as the ‘‘uncertainty relations.””’
In remarks® in German following Bohr’s Lake Como lecture
Heisenberg used instead the word Ungenauigkeitsrelation,
which in English is the rather awkward ‘‘inexactness rela-
tion.””

Aside from not using the German word for ‘‘indetermi-
nacy’’ in his March 1927 paper, Heisenberg did not refer to
these relations as forming the basis for a new ‘‘principle.”’
As far as I can establish, the words ‘‘indeterminacy’’ and
“principle’” did not appear, separately or together, in this
connection until two years later, but ironically they fostered
the more common English—language usage ‘‘uncertainty
principle,”” rather than ‘‘indeterminacy principle.”” Heisen-
berg used the word Unbestimmtheitsrelationen, 1ndeterm1—
nacy relations, for the first time in a German survey’ of the
history of quantum theory written just before he left Ger-
many for a tour of America and the Far East from March to
November 1929. This word appeared again in the German
manuscript for a series of lectures that Heisenberg delivered
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