Physics in the laundromat
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The spin cycle of a washing machine involves motion that is stabilized by the Coriolis force, similar
to the case of the motion of shafts of large turbines. This system is an example of a stable inverted
pendulum. ©1998 American Association of Physics Teachers.

|. INTRODUCTION Mf+mr = —kr— vyr, (1)

Many of us have had the opportunity to observe clothesgvhere the position of mass is
tumbling in a dryer at a laundromat, and perhaps have re- N . -
flected how the angular velocity of the drum must be less m(f+a cosé—0)r+asiné—0)o, @
than \/g/r, wherer is the radius of the drum ang is the and y is the coefficient of the velocity-dependefttansla-
accelerator due to gravity, if the clothes are to fall free of thetional) friction on the shaft of the drum.
drum and make improved contact with the hot air. Another The equation of motion associated with coordinate
common observation is the vibration of a washing machine . -, 2 2 :
during the start of its spin cycle. Indeed, if the load is poorly =T 6°+bQ* cog¢—6) —wor—1I'r, ©)
distributed the vibration becomes so violent that the washegnd that with coordinaté is
cannot spin up until the load is redistributed. If one defeats . .
the interlock on the door of a top-loading washer during a  0=r6+2r 6—bQ? sin(¢—6)+Tr 6, (4)
typical_spin cycle,_the center of the rotor will be obseryed_ tOwhere we have introduced the notation
move in a small circle, possibly off center, whose radius is a
measure of the imbalance of the load. k

The motion of the axis of the drum of the washer is an ~ ®0~ V11 m ®)
example of the motion of unbalanced shafts of large rotatin ] ) )
machines, as has been well described by Landau and Kitaigor_ the natural frequency of vibration of the washing ma-
orodsky in a popular bookHere we analyze a simple model chine,

of a washer that contains the essential physics. The related m
topic of whirling of a vertical wire has been treated by b= a, (6)
Pippard? m+M
for the distance of the center of mass from the shaft, and
II. A MODEL WASHING MACHINE = 4 @
m+M "’

The drum and the circularly symmetric part of the load of . . . , ,
a washing machine have malsk and are constrained by a These equations can be interpreted in a frame rotating with
motor to rotate with angular velocit (about the vertical; ~angular velocityd. Equation(3) tells us that the total mass
gravity can then be ignorédThe load is not circularly sym- times the radial gcceleratlon of mabk equa!s the spring
metric in general, and we characterize the departure frorforce plus the radial component of the centrifugal force and
symmetry by a masm located at fixed radius from the friction. Equation(4) indicates that the azimuthal coordinate
axis of the drum, and at fixed azimuth relative to the drum.forces plus friction sum to zero; the term is the Coriolis
The axis of the drum is not, however, fixed in the frame ofacceleration.
the laundromat. Rather, a set of springs connect the axis to The equations of motion with the neglect of friction are
the frame so as to approximate a zero-length spring of conalso readily deduced from the Lagrangian
stantk. In motion, the axis of the drum can be displaced . 9, 202 Cn
from rest by the amountr(6) in a cylindrical coordinate L=z2(m+M)(r*+r=6%) —marQ sin(¢—6)
system fixed in the laundromat. The azimuth of the line from +marfQ cod ¢— 0)+ i1 +ma2)Q2—kr2,  (8)
the center of the drum to mass is labeled¢, as shown in _ o )
Fig. 1. The time derivative o is constrained by the motor Wherel is the moment of inertia of the drum plus symmetric
to be constantz}b=(2 part of the load. The rotational kinetic energy is constant by
It is interesting to consider the motion of the drum in the?sf'#éngﬁgln'sisso the moment of inertia does not appear further
presence of damping. As a simple model we suppose the ysIS.
spatial motion of the shaft of the drum is subject to a fric-
tional force proportional to its velocity. The frictional torque 1ll. STEADY MOTION
that opposes the forced rotatiéhdoes not, however, affect i ] o . .
the motion. _ We first discuss steady motion in whick=0, r=0, and
The equations of motion of this system of two degrees off=0. The shaft of the drum moves in a circle of radiys
freedom,r and 6, are readily deduced from the Newtonian and the mass is a constant azimutkb,= ¢— 6 relative to
approach: the azimuth of the shaft. Then E() tells us
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Fig. 1. Model of the spin cycle of a washing machine. The drum and sym-

metrical part of the load have mabk. The center of the drum is at (6)
and is connected to the origin by a zero-length spring of constartn
unbalanced load of masn lies at distance from the center of the drum
and at angleg with respect to a fixed direction in the laundromat. The
washer motor turns the drum with angular veloaty ().

bQ? cos ¢,
VO—W, 9
while Eqg. (4) indicates that
bQ sin
fo=——p— %o, (10
Together,
COS ¢pg= wg—QZ
* Jlw3-092+ 1207
1y
né ro
sin o= )
* Jwi-027+1%0?
and
bQ?
(12

ro= :
* J(wi-027+120?

For a balanced load{=0), the distancé is zero, so the
equilibrium displacement is zero also.

For low spin (A<wg) an unbalanced load finds itself at
relative azimuthgy~0, while near resonance)~ wg) the
azimuth is~ /2, and for high spin > ) the azimuth
approachesr. In the latter case the system is a kind of in-
verted pendulum.

The center of mass of the system is at distance

bw}
Mem= .
T (w3-0%)2+ 1202
Thus the center of mass approaches the origin as the(kpin
becomes large, even though the shaft is at radjesh. The

system can be called self-centering as the $piimcreases,
once it successfully passes through the resonance region.

13
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IV. STABILITY

Is the desirable self-centering motion found above stable
against small perturbations? If the anglenvere locked at
d— ¢g, i.e., if only radial oscillations were permitted, and
0> wq, the answer would be no!

To see this we, refer to Eq3), which for the locked
hypothesis reads

F=(Q%— w3)r+bQ? cos¢y—1I'r.

For oscillatory radial motion the coefficient of the termrin
must be negative. Hence, the locked motion would be stable
only for low spin,Q)<wg.

However, we will find that the motion is stable when both
radial and azimuthal oscillations are considered. The linked
system of massem and M forms a kind of double pendu-
lum. The motion in which¢~ 6+ 7 that arises when the
drive frequency() exceeds the resonant frequensy is an
example of a stable inverted pendulum.

To demonstrate this we perform a perturbation analysis,
seeking solutions of the form

r=ro(l+e), O0=d—po+o, (15

where the perturbations are desired to be small and oscilla-
tory with frequencyw:

i wt 5= 5Oei wt (16)

€=€p€ ",
The constantg,, 65, andw are complex, in general, and, of
course, the physical motion is described by the real parts of
(15). Both the real and imaginary parts efshould be posi-
tive; the real part is the frequency of oscillation and the
imaginary part is the damping decay constant.
In the first approximation we now have

cog ¢— 0)=coS ¢pg+ & Sin ¢g,

Sin(¢p— 0)=sin ¢g— 6 COS .

Then, using(15)—(17) in (3) and keeping terms only of first
order of smallness, we find

(14

with | egl .| 80| <1.

(17)

— w%eg=02+2iQy+ M So— wieg—iwleg.
(18)
With Eqg. (10) this tells us
ra+2ieQ
o 0= w5+ Q2—iwl %: 19

Similarly, Eq.(4) leads to

_ bQ? cos ¢q _
0=— w2y +2iQweg+ ———— 85+ TI'Qgept+iwl &g,
(20)
which together with Eq(9) tells us
ro+2iQw
Ozwz—wé-f-ﬂz—iwl—‘ €o- (22)
Equations(19) and (21) are consistent only if
ro+2iQw )
wz—wg+92—in:il' (22
which leads to the quadratic equation
0?—20(+Q—iT/2)— wi+Q?*il'Q=0. (23
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Fig. 3. If the drive frequency) is large compared to the resonant frequency
(), the perturbed motion is a circle of radiugwhose center is displaced by

Fig. 2. The steady motion of the axis of the drum is at angular vel®&tity €ry.

a circle of radiugy about the origin. The perturbed orbit is nearly circular,

but precesses with angular velociéy, and lies in the annulusy(1— R . . .
<r<pr0(1+60). 9 % o7 \hich indicates that the radial and azimuthal perturbations

are 90° out of phase. The angular velocity of the motion of
the center of the drum is

0=0Q+ € SINQ = Joi— (T12)?), (26)

which is Q) on average. This implies that the perturbed mo-

The roots of this with positive real parts are

e Vog—(T2)°+0+iT12, Q<\ws—(T/2)? tion of the shaft of the drum is still a circle of radiug to
Q=+ \/wé—(F/2)2+iF/2, > \/wé—(FIZ)Z' first approximation. However, since the frequeneyof the

(24 perturbation differs from the average rotation frequefity

L he orbit of the center of the drum is not closed but precesses
In the above we have assumed that the damping is weak . aular frequenc —(T12)%~ as sketched in Fi
enough thatwy>1"/2. Then perturbations die out with char- 9 q “o @o. 9.

acteristic time /', which is greater than the natural period 2.In t.he limit FhatQ»,wO the mo_tlon .Of the center_ of the
of oscillation, 1k,. drum is essentlal_ly_a circle of radl_mg d_|splaced by dlz_stance_
Thus stable motion exists for all values of the sgin €00 from the origin, as shown in Fig. 3. In practice this
Referring to Eq(20), we note that the key coupling between displacement can be quite noticeable, as the reader can con-
the radial and azimuthal perturbatiofsand &) is provided  [I'M on his or her next trip to the laundromat.
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MACH'’S PRINCIPLE

Mach’s principles—whatever they may be—will always find their defenders and belieyers.
When one of its promoters, Dennis Sciama, slammed on the brakes of his car, propelling his
girlfriend, seated next to him, toward the windshield, she was said to be heard moaning, “All
those distant galaxies!”
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