
Physics in the laundromat
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The spin cycle of a washing machine involves motion that is stabilized by the Coriolis force, similar
to the case of the motion of shafts of large turbines. This system is an example of a stable inverted
pendulum. ©1998 American Association of Physics Teachers.
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I. INTRODUCTION

Many of us have had the opportunity to observe cloth
tumbling in a dryer at a laundromat, and perhaps have
flected how the angular velocity of the drum must be le
than Ag/r , wherer is the radius of the drum andg is the
accelerator due to gravity, if the clothes are to fall free of
drum and make improved contact with the hot air. Anoth
common observation is the vibration of a washing mach
during the start of its spin cycle. Indeed, if the load is poo
distributed the vibration becomes so violent that the was
cannot spin up until the load is redistributed. If one defe
the interlock on the door of a top-loading washer during
typical spin cycle, the center of the rotor will be observed
move in a small circle, possibly off center, whose radius i
measure of the imbalance of the load.

The motion of the axis of the drum of the washer is
example of the motion of unbalanced shafts of large rota
machines, as has been well described by Landau and Ki
orodsky in a popular book.1 Here we analyze a simple mod
of a washer that contains the essential physics. The rel
topic of whirling of a vertical wire has been treated b
Pippard.2

II. A MODEL WASHING MACHINE

The drum and the circularly symmetric part of the load
a washing machine have massM and are constrained by
motor to rotate with angular velocityV ~about the vertical;
gravity can then be ignored!. The load is not circularly sym-
metric in general, and we characterize the departure f
symmetry by a massm located at fixed radiusa from the
axis of the drum, and at fixed azimuth relative to the dru

The axis of the drum is not, however, fixed in the frame
the laundromat. Rather, a set of springs connect the ax
the frame so as to approximate a zero-length spring of c
stant k. In motion, the axis of the drum can be displac
from rest by the amount (r ,u) in a cylindrical coordinate
system fixed in the laundromat. The azimuth of the line fro
the center of the drum to massm is labeledf, as shown in
Fig. 1. The time derivative off is constrained by the moto
to be constant:ḟ5V.

It is interesting to consider the motion of the drum in t
presence of damping. As a simple model we suppose
spatial motion of the shaft of the drum is subject to a fr
tional force proportional to its velocity. The frictional torqu
that opposes the forced rotationV does not, however, affec
the motion.

The equations of motion of this system of two degrees
freedom,r and u, are readily deduced from the Newtonia
approach:
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M r̈1mr̈m52kr2g ṙ , ~1!

where the position of massm is

rm~r 1a cos~f2u!! r̂1a sin~f2u!û, ~2!

and g is the coefficient of the velocity-dependent~transla-
tional! friction on the shaft of the drum.

The equation of motion associated with coordinater is

r̈ 5r u̇21bV2 cos~f2u!2v0
2r 2G ṙ , ~3!

and that with coordinateu is

05r ü12ṙ u̇2bV2 sin~f2u!1Gr u̇, ~4!

where we have introduced the notation

v05A k

m1M
~5!

for the natural frequency of vibration of the washing m
chine,

b5
m

m1M
a, ~6!

for the distance of the center of mass from the shaft, and

G5
g

m1M
. ~7!

These equations can be interpreted in a frame rotating w
angular velocityu̇. Equation~3! tells us that the total mas
times the radial acceleration of massM equals the spring
force plus the radial component of the centrifugal force a
friction. Equation~4! indicates that the azimuthal coordina
forces plus friction sum to zero; the term 2ṙ u̇ is the Coriolis
acceleration.

The equations of motion with the neglect of friction a
also readily deduced from the Lagrangian

L5 1
2~m1M !~ ṙ 21r 2u̇2!2maṙV sin~f2u!

1maru̇V cos~f2u!1 1
2~ I 1ma2!V22 1

2kr2, ~8!

whereI is the moment of inertia of the drum plus symmetr
part of the load. The rotational kinetic energy is constant
assumption, so the moment of inertia does not appear fur
in the analysis.

III. STEADY MOTION

We first discuss steady motion in whichṙ 50, r̈ 50, and
ü50. The shaft of the drum moves in a circle of radiusr 0

and the massm is a constant azimuthf05f2u relative to
the azimuth of the shaft. Then Eq.~3! tells us
209© 1998 American Association of Physics Teachers
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r 05
bV2 cosf0

v0
22V2 , ~9!

while Eq. ~4! indicates that

r 05
bV sin f0

G
. ~10!

Together,

cosf05
v0

22V2

A~v0
22V2!21G2V2

,

~11!

sin f05
GV

A~v0
22V2!21G2V2

,

and

r 05
bV2

A~v0
22V2!21G2V2

. ~12!

For a balanced load (m50), the distanceb is zero, so the
equilibrium displacement is zero also.

For low spin (V!v0) an unbalanced load finds itself a
relative azimuthf0'0, while near resonance (V'v0) the
azimuth is'p/2, and for high spin (V@v) the azimuth
approachesp. In the latter case the system is a kind of i
verted pendulum.

The center of mass of the system is at distance

r cm5
bv0

2

A~v0
22V2!21G2V2

. ~13!

Thus the center of mass approaches the origin as the spV
becomes large, even though the shaft is at radiusr 0'b. The
system can be called self-centering as the spinV increases,
once it successfully passes through the resonance regio

Fig. 1. Model of the spin cycle of a washing machine. The drum and s
metrical part of the load have massM . The center of the drum is at (r ,u)
and is connected to the origin by a zero-length spring of constantk. An
unbalanced load of massm lies at distancea from the center of the drum
and at anglef with respect to a fixed direction in the laundromat. T
washer motor turns the drum with angular velocityḟ5V.
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IV. STABILITY

Is the desirable self-centering motion found above sta
against small perturbations? If the angleu were locked at
f2f0 , i.e., if only radial oscillations were permitted, an
V.v0 , the answer would be no!

To see this we, refer to Eq.~3!, which for the locked
hypothesis reads

r̈ 5~V22v0
2!r 1bV2 cosf02G ṙ . ~14!

For oscillatory radial motion the coefficient of the term inr
must be negative. Hence, the locked motion would be sta
only for low spin,V,v0 .

However, we will find that the motion is stable when bo
radial and azimuthal oscillations are considered. The link
system of massesm and M forms a kind of double pendu
lum. The motion in whichf'u1p that arises when the
drive frequencyV exceeds the resonant frequencyv0 is an
example of a stable inverted pendulum.

To demonstrate this we perform a perturbation analy
seeking solutions of the form

r 5r 0~11e!, u5f2f01d, ~15!

where the perturbations are desired to be small and osc
tory with frequencyv:

e5e0eivt, d5d0eivt with ue0u ,ud0u!1. ~16!

The constantse0 , d0 , andv are complex, in general, and, o
course, the physical motion is described by the real part
~15!. Both the real and imaginary parts ofv should be posi-
tive; the real part is the frequency of oscillation and t
imaginary part is the damping decay constant.

In the first approximation we now have

cos~f2u!5cosf01d sin f0 ,
~17!

sin~f2u!5sin f02d cosf0 .

Then, using~15!–~17! in ~3! and keeping terms only of firs
order of smallness, we find

2v2e05V212iVd01
bV2 sin f0

r 0
d02v0

2e02 ivGe0 .

~18!

With Eq. ~10! this tells us

e052
GV12ivV

v22v0
21V22 ivG

d0 . ~19!

Similarly, Eq. ~4! leads to

052v2d012iVve01
bV2 cosf0

r 0
d01GV0e01 ivGd0 ,

~20!

which together with Eq.~9! tells us

d05
GV12iVv

v22v0
21V22 ivG

e0 . ~21!

Equations~19! and ~21! are consistent only if

GV12iVv

v22v0
21V22 ivG

56 i , ~22!

which leads to the quadratic equation

v222v~6V2 iG/2!2v0
21V26 iGV50. ~23!

-
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The roots of this with positive real parts are

v5HAv0
22~G/2!26V1 iG/2,

V6Av0
22~G/2!21 iG/2,

V,Av0
22~G/2!2

V.Av0
22~G/2!2.

~24!

In the above we have assumed that the damping is w
enough thatv0.G/2. Then perturbations die out with cha
acteristic time 2/G, which is greater than the natural perio
of oscillation, 1/v0 .

Thus stable motion exists for all values of the spinV.
Referring to Eq.~20!, we note that the key coupling betwee
the radial and azimuthal perturbations~e andd! is provided
by the Coriolis force.

As the spin frequencyV approaches the resonant fr
quencyv0 the lower frequency of the perturbed motion go
to zero. If the amplitude of the perturbation is large, it will b
noticeable throughout the laundromat.

For high spin, Eqs.~21! and ~24! yield the relation

d05
i e0

12
iG

2V
2

G2

8V~V6Av0
22~G/2!2!

' i e0 , ~25!

Fig. 2. The steady motion of the axis of the drum is at angular velocityV in
a circle of radiusr 0 about the origin. The perturbed orbit is nearly circula
but precesses with angular velocityv0 and lies in the annulusr 0(12e0)
,r ,r 0(11e0).
211 Am. J. Phys., Vol. 66, No. 3, March 1998
ak

which indicates that the radial and azimuthal perturbatio
are 90° out of phase. The angular velocity of the motion
the center of the drum is

u̇5V1e0 sin~V6Av0
22~G/2!2!, ~26!

which is V on average. This implies that the perturbed m
tion of the shaft of the drum is still a circle of radiusr 0 to
first approximation. However, since the frequencyv of the
perturbation differs from the average rotation frequencyV,
the orbit of the center of the drum is not closed but preces
at angular frequencyAv0

22(G/2)2'v0 , as sketched in Fig
2. In the limit thatV@v0 the motion of the center of the
drum is essentially a circle of radiusr 0 displaced by distance
e0r 0 from the origin, as shown in Fig. 3. In practice th
displacement can be quite noticeable, as the reader can
firm on his or her next trip to the laundromat.
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Fig. 3. If the drive frequencyV is large compared to the resonant frequen
V0 the perturbed motion is a circle of radiusr 0 whose center is displaced b
er 0 .
MACH’S PRINCIPLE

Mach’s principles—whatever they may be—will always find their defenders and believers.
When one of its promoters, Dennis Sciama, slammed on the brakes of his car, propelling his
girlfriend, seated next to him, toward the windshield, she was said to be heard moaning, ‘‘All
those distant galaxies!’’

Engelbert Levin Schucking, in a review ofGravitation and Inertia,by Ignazio Ciufolini and J. A. Wheeler, Physics Today
49~6!, 58 ~1996!.
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