IV, CONCLUSION

In conclusion, we have reported on a setup for demon-
strating the storage of macroscopic particles in a “Paul
trap.” The simplicity of the experiment allows direct appli-
cations in lectures, laboratories, etc. which demonstrate
features of the confinement of particles. Finally, we note
that we also have succeeded in establishing a “Paul-stor-
age-ring” by similar experimental procedures. In this ring,
the lining up of particles can be visualized nicely, a proper-
ty that one hopes will be achieved in future storage rings for
fast and cooled ions.
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A solution is presented to the following problem: Describe the motion of a tank car initially at rest
once an off-center drain opens. The tank car rolls without friction on a horizontal surface, and the
water flows out of the drain vertically in the rest frame of the car.

L INTRODUCTION

The motion of a leaky tank car is surprisingly complex.
We approach a solution in four steps: a brief introductory
discussion of the motion, a discussion of the forces that
cause the motion, a general analysis, and last, two detailed
examples. (This problem has appeared in recent years on
qualifying exams in Russia. )
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There are no external horizontal forces on the system of
tank car + water (including the water that has drained
out), so the momentum is conserved and the center of mass
(c.m.) of the whole system must remain fixed. As the water
drains out of the off-center hole the tank car initially moves
opposite to the direction of the drain to keep the c.m. fixed.
But if this motion persisted until all the water drained out,
then both the car and the fallen water would have momen-
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tum in the same direction. Rather, the car reverses its direc-
tion of motion at some time and has a final velocity toward
the drain.

I1. FORCES THAT CAUSE MOTION

The water leaves the tank with zero relative horizontal
velocity. On recalling the usual rocket problem, there is no
propulsion due to the rocket exhaust unless the exhaust has
a nonzero velocity relative to the rocket. So, in the present
problem, there is no rocket action in the usual sense. How-
ever, in both problems the forces are due to momentum
transfers between the walls of the rocket or tank and the
working substance inside. In a rocket, the walls absorb mo-
mentum from the gas molecules moving outward from the
region of combustion; because of the hole at the rear of the
rocket this leads to a net forward force,

The case of the leaky tank car is more subtle. The motion
begins as a transient response in which the walls of the tank
push on the water to move it toward the drain once the
latter is opened. The reaction on the walls of the tank gives
it an initial velocity opposite to the direction from the c.m.
to the drain.

If the flow rate were constant in time the tank would roll
with constant velocity (see Sec. IV). But if the flow rate
decreases as a function of time the tank walls (or floor)
must slow down the flow toward the drain, which in turn
reduces the velocity of the tank. Since the tank + water
now has less mass than before, the momentum reabsorbed
from the flowing water can actually reverse the initial ve-
locity!

Indeed, the final velocity of the tank car must be opposite
to its initial velocity. If not, then the empty tank car-

+ water that has fallen out would all have nonzero mo-
mentum in the same direction, in contradiction to the state
before the drain was opened.

III. GENERAL ANALYSIS

We present a solution that avoids the need for a detailed
description of the internal motion of the water in the tank,
even though this is where the “real physics” resides.

To discuss the motion, let x(#) be the horizontal coordi-
nate of the center of the tank car whose mass (with no
water) is m, and suppose that the tank car starts from rest
at the origin at ¢ = 0. The drain is located a distance D in
the + x direction from the center of the tank. The center of
mass of the entire system must remain at the origin:

O=[m+M(@u)Ix(2) +ja’M(t')X(t,t’),

where M(¢) is the mass'of the water remaining in the tank,
dM(t’) is the amount of water that drained out in the inter-
valdt’ centered on an earlier time ¢ ', and X (z,¢ ') is the hori-
zontal coordinate at time ¢ of the water that drained out at
time ¢ '. In writing this we have assumed that the surface of
the water in the tank is always horizontal so that the center
of mass of that water is at the center of the tank.

Intheintervaldt’ atan earliertime ¢ ', mass — M(¢')dt’
of water drains out with horizontal velocity (¢ ) in the lab
frame. Attime?’ thedrainwasatx(z’) + D,soattimet the
element dM is at X(5,t') =x(t') + D +x(t" )t —1").
Thus the c.m. of the whole system obeys
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0=[m+ M(t)]x(2) — tf dt’' M(t")x(t")
Q

—J- dt' M(t")[x(t') + D—t'x(¢t")]. (1)
0

While an integral equation is not the usual starting point in
mechanics problems, it has the advantage here of integrat-
ing over the unknown transient forces that occur when the
drain is first opened.

We take time derivatives of Eq. (1) to find the equation
of motion. The first derivative yields

0=(m+M)5c—J dt' M(t")x(t') — MD. (2)
0

Werecognize (2) as stating that the total momentum of the
system is always zero: The first term is the momentum in
the tank + water supposing there is no relative motion of
the tank and water; the second term is the momentum of
the water that has left the tank; and (hence) the third term
is the momentum of the water in the tank as measured in
the rest frame of the tank.

We can use Eq. (2) to examine the “initial” condition on
X at an arbitrarily small but positive time:

x(0) = DM(0)/[m + M(0)]. (3)

Whatever form of the flow rate M(#) could be arranged,
M(0) is negative so long as the water is draining out, and
x(0) is in the opposite direction from the c.m. to the drain.

Since Eq. (3) is the limit of (2) as -0 from positive
values, it contains the result of the transient at r = 0. So
while the velocity of the tank is zero before the drain is
opened, it has a finite value just after the drain is opened
and the flow of water inside the tank has been established.
In reaction to the forces from the tank on the water, there is
an impulse from the water on the tank that creates the
initial velocity at the value given by (3).

On taking the derivative of (2) we find:

0= (m+ M)x — MD. (4)

This can be interpreted as indicating that the force on the
tank + water is just the reaction force MD of the accelera-
tion of the water relative to the tank. Because the water
leaves the tank with zero relative velocity, the momentum
(m + M)x is thereby reduced without any reaction force;
hence the simplification of (4) compared to (2).

While M is always less than zero, M is positive for any
realistic flow out of a constant-sized drain hole, and there
will be a force in the + x direction. This force arises as the
walls of the tank arrest the motion of the water toward the
drain so the water can leave the tank with zero relative
velocity. To guarantee the latter condition, the drain might
have to be placed in a sump whose vertical walls can assist
in absorbing the horizontal momentum of the water flow.

The interpretations of (2) and (4) given above have tak-
enthe tank 4 water inside as the subsystem of interest. The
reader might prefer to give emphasis to the tank alone.
Then (2) should be rewritten as

mx= — ((Mx—MD) —f dr’ M(t’)fc(t’)),
0

where the term in parentheses is the momentum of the wa-

ter relative to the lab frame. Taking the time derivative:
mi = — Mx — Mx + MD + Mx.

There are four forces on the tank: — Mx is the inertial force
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of the water in the tank back on the walls of the tank that
are accelerating the water; — Mx is a correction to the
inertial force of the water because the amount of water
inside the tank is changing; MD is the force from the water
onto the tank near the drain hole where the water is slowed
down until it leaves with zero relative velocity; Mx is the
reaction force of the water that leaves the tank back on the
tank. As previously noted, because the water leaves the
tank with zero relative velocity, the reaction force of the
water leaving the tank exactly cancels the correction to the
inertial force of the water left in the tank.
On writing Eq. (4) as

%=DM/(m+ M),
we can integrate this as
M(t")
m4+ M)
M(1)

t N , 2
——+f dt’(—-—M(' ) ) ] , ()
m+ M(t) 0 m+M(t')
where we have integrated by parts to obtain the second
form. When all the water runs out, M — 0 but the integral is
positive definite, so the final velocity must be positive. For
any finite mass m of the car it will return to the origin after
some time, and continue moving in the + x direction.

x=x(0) +DJ‘ dt’
0

1V. EXAMPLES

If energy is conserved in the water flow, and if we can
ignore the vertical velocity of the water in the tank, then the
water drains out with a vertical velocity v given by
v? = 2gh, where A is the height of the water remaining in
the tank car. The mass M(¢) then varies according to

- M = vadrnin = pAdrain Vzgh .
If the tank has a constant vertical cross section 4, then
h=M/pA,,, and

M= — Ay \280M /Ay
This can be integrated to give

M(1) = (M, — St)’, (6)
where M, is the mass of the water when the drain is first

opened, and S is a constant given by 4,,,in /80724 an -
No matter what the shape of the tank we will have

so long as energy is conserved and the drain hole does not

change with time. A constant flow rate could be arranged

in principle by enlarging the hole as time progresses.
From Eq. (3) the initial velocity is

x(0) = —2DS\M,/(m + M,). (7)
From Egs. (4) and (6) the acceleration of the tank car is
x=2DS*/[m+ (M, —51)°],
which is always positive. We integrate this to find
VM, 4 1

m+ M, Jm

using x(0) from Eq. (7). When the tank is empty at time

5c=2DS[—
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t=/M,/S this becomes

5y =208 =MoL ap @9-)
empy m+M, m m
This is positive for any combination of masses m and M,,
but for large tank masses 71, Xqpy, — (4/3)DSM 3*/m?,
which approaches zero.
We can verify by direct integration that momentum is
conserved in the lab frame:

1 1 (S
Xempty = — f dP=— dt Mx.
m m Jo
We integrate x to find
X_ _, M, St +In m+ M, _ VM, — St
D m+M,  m+ (M, — Sty Jm

\/M — St
><(tan"l % —tan“—-——g-————).
m Jm

All three terms vanish at ¢ = 0; the first term is just x(0)z.
When the tank is empty at time ¢ = /M, /S its position is
xem_my=_2 M, +lnm+M°. |
D m+ M, m
The critical value of the mass of the tank car that just returns
to the origin when empty is m = 0.255M,. For larger masses
m the tank car is at negative x when the tank goes empty.
Since g, is always positive, the tank car passes through
the origin at some later time.
We also consider the limit of a massless tank car. Then

% =2DS*/ (JM, — 5t)%,
x= —4DS /M, + 2DS / (M, — S1),
using x(0) = — 2DS/\/M,, and

x 4St VM,

_— +21n .
VM, — St

D M,
Here, the tank car reverses its direction at time t = \/—AE /28
(i.e., when it is still § full) and at position x,;, = — 0.61D,
passes the origin at some later time and moves toward large x
as it empties.

It is instructive to contrast the above results with the less
realistic case that the water drains out at a constant rate:

M(t)=M,—Rt, M= —R, and M=0.

Because the flow rate is uniform no (horizontal) momentum
is transferred from the flowing water to the tank walls once
the flow has been established. Hence there are no further
(horizontal) forces between the water and the tank, and the
velocity of the tank is constant at its initial value. Then

x(t) =x(0) = — DR /(m + M,)

holds until the tank goes empty at time t = M, /R. Its posi-
tion is then X ppy /D= — Mo/ (m + My) > — 1.
However, we seem to have a paradox: at time t = M,/R
the water has all emptied out of the tank and now has mo-
mentum M, x(0), and the tank appears to have momentum
mx(0), both of which are negative! The water actually does
have the momentum as stated, and we infer that since the
total momentum must be zero, the tank takes on a final ve-
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locity
x.ﬁnal = — Mox(o)/m

This arises due to another transient force at time t = M,,/R.
The momentum of the water in the tank relative to the tank
has remained constant at — MD even though the mass of
water that contains this momentum approaches zero. At
time t = M, /R all this momentum must suddenly be trans-
ferred to the tank, which leads to an impulse and hence the
final velocity found above. In practice, viscous drag will pre-
vent the water from acquiring the infinite velocity implied
above, so the leak rate will decrease and the momentum in
the water will be transferred to the tank over a short interval
just before the water runs out.

In the present example it is also easy to keep track of the
momentum of the water in the tank relative to the lab frame.
The impulse at ¢ = 0 gives the tank the velocity x(0) and
hence momentum mx(0). The initial momentum of the wa-
ter in the tank is consequently — mx(0). By time ¢ water of
total mass Rt has left the tank taking momentum R¢x(0)
with it. Since the tank’s momentum is unchanged the mo-
mentum of the water in the tank is — (m + R#)x(0). Just
before the tank goes empty, the water in it contains momen-

An inverted liquid demonstration
M. M. Michaelis and T. Woodward

tum — (m + M, )x(0) > 0 which must be transferred to the
tank in the final impulse. Again, we arrive at the value of
Xgna found above.

As a final remark we consider whether the motion of a
leaky tank car can be observed in practice. For a railroad
tank car that is 20 m long with a 5X 5 m® cross section and
has a 10X 10 cm? drain at one end, the initial velocity would
be about 6 cm/s according to Eq. (7). The forces that pro-
duce this velocity are likely too small to overcome friction,
and no motion would be observed. Instead, one might use an
air track from a physics teaching lab and build a sliding tank
of mass, say, 2 g that could hold 10 g of water. The drain hole
could then be 1 cm off-center. If the hole has area of 1 mm?
the initial velocity would be about 0.05 cm/s. This is rather
small, but should be observable. Care must be given that
external forces during the opening of the hole do not impart a
comparable velocity.
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With the help of a hand-held jigsaw and a tin of syrup, the little known dynamically stabilized
inverted liquid experiment can be demonstrated to large classes. Lengthy effective potential
arguments are short-circuited by a simple inverted U-tube theory accessible to most. The role of
viscosity and wall effects is discussed. The first dynamic stabilization experiment with water is

reported.

L INTRODUCTION

In a previousarticle in this Journal,' we showed how the
inverted pendulum phenomenon could be demonstrated
with the help of a simple jigsaw. The saw vibrates the base
of the pendulum along a vertical axis. We now show how
this educational trick can be extended to inverted liquids.
With the same hand-held piece of inexpensive equipment,
both dynamic stabilization experiments can be easily and
rapidly demonstrated to large groups.

As pointed out in the previous article,’ dynamic stabili-
zation has a wealth of generally little known but important
applications ranging from control of the lateral dimensions
of accelerator and laser beams to thermonuclear fusion ex-
periments. It is our opinion that with the present growth of
discoveries in nonlinear processes (e.g., in plasma physics
and in high-power optics) an early introduction to two
striking nonlinear phenomena is worthwhile. It is the pur-
pose of this article to emphasize the similarities between
the inverted pendulum and the inverted liquid.

The article is divided into four sections. In Sec. 11 we
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describe the experimental apparatus. In Sec. III we briefly
review Kalmus'? theory of the inverted pendulum and
show how it can be extended to a special type of inverted
liquid experiment, the inverted U tube. In Sec. IV we show
that the normal outflow of liquid from a container can be
likened to that from a U tube and that the dynamic stabili-
zation parameters are almost identical. We also apply the
arguments of the previous article' to show that we never
have a “perfectly inverted liquid.” In Sec. V we compare
experimental results with the theory of the earlier sections.
We then report a novel dynamic stabilization experiment
with water contained in a U tube.

No introduction to an article on inverted liquids would
be complete without mentioning first and foremost the
work of Wolf.>* Anyone desirous of an advanced theoreti-
cal treatment of the inverted liquid problem rather than
our simplified didactic treatment inspired by Kalmus
should consult Wolf’s early papers. Anyone of a quantum
mechanical inclination would enjoy Pippard’s inverted
pendulum treatment® —which might easily be extended to
liquds.

© 1991 American Association of Physics Teachers 816



