Right and wrong use of the Lenz vector for non-Newtonian potentials
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An article that recently appeared in this Journal' propagates an error first published here more
than 20 years ago.” This concerns a proposed use of the Lenz vector® in obtaining the rate of
precession of the perihelion for a central-force problem in which the potential has a small
departure from the Newtonian form, V(r) = k /r. Three correct solutions to this problem are
presented, based on the effective-potential technique, on the method of averages, and on a careful

use of the Lenz vector.*

I. THE EFFECTIVE-POTENTIAL TECHNIQUE

We consider the precession of the orbit of a particle mov-
ing under the influence of a central force that departs
slightly from the Newtonian form. Exact solutions are not
generally available in this case, so we seek approximate
methods. In this section we use the effective-potential tech-
nique to express the noncircular orbit in the approximate
form

rzr(;(l + € cos at), @)

which is an accurate representation only if €€ 1, due to the
neglect of higher-order terms. We believe this technique to
be the most reliable in dealing with pertubations from cir-
cular orbits, but leave the reader to judge its merits com-
pared to other methods presented in the following sec-
tions.’

For motion under a central force,

F= —G(r)?, (2)
the total energy is conserved:
1. L* (7
E=—m# J. G(s)ds, 3
2 + py (s) (3)

where the dependence on ¢ has been eliminated via the
conserved angular momentum L = m#*6. This reduces the
problem of radial motion to that caused by the effective
potential :

L? "
Veﬂ-(r) =E—n—r—2—+f G(S)ds. (4)

In this approach it is useful to think of the orbit parameters
rpand €in (1) as dependent on the constants of the motion
Eand L.

For a specified value of angular momentum L, there is a
circular orbit at constant r, given by

V() _ L
dr mr,

Introducing € as the angular velocity of the equilibrium
circular orbit, we have

+ G(r,) =0. (5

L=mriQ} (6)
and
G(ry) = L*/mry = mr > €))

On expanding the effective potential about 7, and sup-

540 Am. J. Phys. 58 (6), June 1990

posing that r — ryis small, the equation of motion becomes
dVq(r) d*V g (r,)
dr ar

mi=Fg(r)= — (r—ro).

(8)
For motion that departs from the circular orbit, we have
oscillatory solutions whose radial dependence has the form
(1). The associated angular motion is obtained via conser-
vation of angular momentum:

=0t — 2e()/a)sin at. 9)

The frequency «a of the oscillatory motion is found from
(8) as

a=\/(1/m)d2Veﬁ(ro)/dr2. (10)
On use of (6) and (7) in (10) we find
a =03+ r,G'(ry)/G(rp). (1)

ForG (r) =~k /P, ais approximately equal to {2 and we may
expand

a=M1+[2+r,G (r,)/G(ry)]

=Q[2 + r,G'(ry)/2G(ry) ]. (12)

The perihelion of the noncircular orbit, (1), precesses with
angular velocity w given by

w=0—a= —Q[1 4+ 7G'(r,)/2G(ry) 1. (13)

The problem at hand is the case of a small departure
from the Newtonian force law:

F = (k/r)? + B(r)?. (14)
Then (13) leads to the angular velocity of precession as
o = B(r,)/mryQ + B’ (ry)/2mA). (15)

II. ERRONEOUS USE OF THE LENZ VECTOR

Although the above approach follows the basic line of
attack in all problems of small oscillations about equilibri-
um, it is apparently too lengthy for some people’s taste.
Greenberg” has proposed a much quicker derivation based
on the Lenz vector.

We recall that the Lenz vector,

A =?+ LXp/km, » (16)
is a constant of the motion in the case of the central force
F= — (k/P)f a7
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As noted by Greenberg,? the constancy of A is readily veri-
fied with the useful relation that

9 _ L s

d mr

We now consider the effect of a small correction, B(r),
to the Newtonian force, as in (14) We again desire an
expression for @, the rate of precession of the perihelion of
the orbit. The vector o is of course parallel to the angular
momentum L.

The hypothesis of Greenberg is that « can be found by
supposing the vector A rotates with angular velocity o.
While this hypothesis is sound, the method used by Green-
berg to evaluate @ is inaccurate.

Here we follow the derivation as given by Greenberg to
compare with the standard result (15). We look for a time
dependence of A of the form

dA _
dr

Direct differentiation of (16), combined with (14) and
(18), leads to

_d_A — __B (r) LXx },
dt km
while we also find by direct substitution into (16) that
oXA =0X?— [(oL)/km]p. (21)

(18)

©XA. | (19)

(20)

The argument of Greenberg is that p averages to zero over a
closed orbit, and that B(r) in (20) may be averaged to
B(ry), leading to

o = [B(ry)/km]L and o = B(ry)/mry}. (22)

We see that the result (22) bears some resemblance to
the correct form (15), but the dependence of w on the de-
rivative of the force field is missing in (22). The authors of
Refs. 1 and 2 may have been misled by the coincidence that
for the case B(r) = C /r%, the absolute values of w found
with (15) and (22) are the same, although the signs are
opposite. Thus the second term in (15) is actually the larg-
er for some cases of interest, and its absence cannot be ex-
cused as neglect of a small correction.

ITIT. CORRECT USE OF THE LENZ VECTOR

A correct use of the Lenz vector for non-Newtonian po-
tentials has been presented in this Journal by Sivardiére,*
without mention of the attempt by Greenberg®to solve the
same problem. Here, we recast the argument of Sivardiére
into the notation used above.

First, it is useful to note that for the Newtonian poten-
tial, V= — k /r, the (constant) Lenz vector A of (16) is
oriented along the major axis of the elliptical orbit, and has
magnitude equal to the eccentricity ¢ of the orbit. To see
this, we introduce 8 as the angle between A and radiusr and
evaluate the scalar product:

Ar=Arcos 0 =r+LXpr/km=r—L*km, (23)
using (16). On solving for r, we have
=L%km(1 — Acos 6), (24)

which verifies the interpretation A as the “eccentricity vec-
tor,” with the magnitude 4 being equal to the eccentricity €
of the orbit.

We reexamine the argument of Sec. Il beginning at (20).
Greater care is required in calculating the time average of
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this expression. First, we decompose
$==2cos 6 +8sin 6, (25)

wherg & is a unit vector along the initial direction of A, and
&=L x&is a unit vector orthogonal to € and L. Then the
desired time average is

<ié> = Lx@(B(r)cos 8) + kLXS(B(r)sin ).
m

dt km
(26)
We will evaluate the time average of a function fas
@) =—f fde =— f(6) —de
r’fdo, 27
21TL J ! (27

where. T = 27/Q is the period of the orbit. The use of 27 as
the period of the orbit in angle € is not strictly correct for
the precessing orbits under consideration and limits the
accuracy of the method of this section independent of the
approximations (28) and (29) used below.

Following the approximation of (1), we write

rery(1 + €cos 9), (28)
and so
B(r)=B(ry) + (r—1ry)B'(rp)
=B(ry) + €rycos 6B’ (7). (29)

On inserting (27)—-(29) into (26), only the integrals in
cos? 6 will be nonzero, leading to

)
(30)
with
o = (rRQ/2k)[2B(ry) +1,B'(ry)]. (31)

Noting that k ~mQ?r}, we obtain the result (15) of Sec. L.

This vindicates the insight of Greenberg that the Lenz
vector A points along the precessing major axis of the orbit
of a particle in a non-Newtonian potential. Sivardiére*
notes that the Lenz vector technique may be used for orbits
with arbitrary eccentricity ¢, although the method is accu-
rate only if the perturbation B(r) is small. (This remark
holds for the method of Sec. IV as well.) Sivardiere also
gives examples of the use of the Lenz vector for orbits per-
turbed by noncentral forces. It remains that considerable
care is required when using the Lenz vector.

IV. THE METHOD OF AVERAGES

The precession of orbits offers an instructive illustration
of the so-called method of averages of Krylov and Bogoliu-
bov.® This technique arose from the problem of character-
izing the solutions of nonlinear differential equations.
When applied to the Kepler problem it proves to be closely
related to the averaging of the Lenz vector discussed in Sec.
IIL

The starting point in the present case is the ‘‘orbit equa-
tion” obtained in the usual way from F = ma via the substi-
tution

u=1/r, (32)
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and after elimination of the time ¢ in favor of polar angle 6

d?u km  mB(u)

U=—-——"_ 33
do? L? L2 (33)
Here we have assumed a central force of the form (14). If
the small correction B were actually zero, we immediately
find the standard elliptical orbit

u=1/r=(1/ry)(1 — €cos ),
where 7, = L */km is the average radius.

The approach of Krylov and Bogoliubov is to seek a
solution when B is nonzero of the form

u=1(1/ry)[1 — €(B)cos #(6)]. (35)
This introduces two unknown functions, € and ¢, so Eq.
(33) alone will be insufficient to determine them. As the

needed second condition we ask that the derivative of u
with respect to  have the same form as when B is zero:

(34)

du € .

— = — §in ¢.

dé r, ¢
On substituting (36) into (33), and (35) into (36) we can

solve for the derivatives of € and ¢ with respect to 6:

(36)

de B(u) .

W ke 3D
dé B(u) )

s APy N AL A )

20 prm cos ¢ (38)

The method of averages consists in approximating the
right-hand sides of (37) and (38) by their averages over
one period in .

To implement this, we need a further approximation for
the factor B /u*:

1/ =r3/(1 —ecos ¢)>=ri(1 + 2ecos §), (39)
B(u)=B(ry) + (r—re)B'(7)
~B(ry) + €rycos B’ (r,), (40)
B(u)/v*=ri{B(r,)
+ €[2B(ry) + B’ (ry) 1cos ¢ 1. (41)

From (41) and (37) we see that € is constant on average
over many orbits, as expected. On combining (41) and
(38) and averaging cos® ¢ to }, we find

d 0 ,

d—‘gzl ——2-[2B(r0) + B (7). (42)
In the notation of Egs. (1) and (10), we have ¢ = at and
0 =01, s0dg/d0 = a/), and the angular velocity of preces-
sion is

©=0—a=(rQ/2k)[2B(ry) + r,B'(ry)]. (43)

Noting that k~mQ?r;, Eq. (43) reduces to our previous
result (15).
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A Faraday rotation experiment is described for laser beams of two wavelengths in moderate
magnetic fields, using flint glasses of large rotary birefringence and (liquid) carbon disulfide.
Results show a linear relation between angle of rotation and field strength, and indicate a strong
dependence on wavelength, attributable to the dispersion, which is determined from a
measurement of the Verdet constant. The theoretical treatment and experimental technique are
recommended for the advanced undergraduate laboratory.

I. INTRODUCTION

Faraday rotation provides an excellent experiment for
the upper division, undergraduate physics, or engineering
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student, combining elements of polarization optics with
magnetism and atomic physics. The experiment has been
made more elegant in recent times due to the availability of
relatively inexpensive laser sources and rather esoteric
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