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E-144: Comparison of Methods of Reconstruction of
Nonlinear Compton Scattering via ECAL Data

Abstract

This note compares and contrasts the approaches of Glenn Horton-Smith and Kostya
Shmakov to extracting the spectra of nonlinear Compton scattering from the data recorded
with the ECAL Si-W calorimeter. This note is based in part on Glenn’s note “ECAL ‘Best
Aperture’ Reconstruction” (Sept. 29, 1995), and Kostya’s draft sections for the Phys. Rev. pa-
per, as well as conversations with Glenn and Kostya.

1 Introduction

1.1 Coordinates, Indices and ECAL Segmentation

The FFTB dump magnets disperse the Compton scattered electrons vertically which we will
call the y direction. The is therefore a correlation between an electrons momentum and the
y-coordinate at which the electron enters the ECAL. The Compton scattering spectrum is a
rapid and monotonic function of y.

The ECAL (see Fig. 1) is segmented into horizontal rows which I will label by subscript
i. Usable signal can be found in only the top four rows ~ and we must decide later to what
extent we trust the data in the fourth row where backgrounds are very high. Typically
signals in row 4 are of order 1% of those in row 1.

The ECAL is segmented vertically into four columns, often grouped as ‘inner’ and ‘outer’.
The ECAL is segmented longitudinally into four segments. The last segment contains little
signal from electrons that enter the front of the ECAL.

In Kostya’s analysis the first three longitudinal segments are summed. Kostya also groups
the two inner columns together, and the two outer columns together. In contrast, Glenn
keeps the data from every segment of ECAL separate, and extends the row index ¢ to cover
all types of segments. I will try to remind the reader when the slightly different use of index 7
by Glenn and by Kostya is important.

1.2 ECAL Calibrations and Response Kernels

Extensive studies of ECAL performance have been made in parasitic runs of the FFTB.
Pulses of 1-100 electrons were obtained at a selected momentum in the range 5-30 GeV. The
beam-spot size was about 1 mm. The vertical position of the ECAL varied in small steps.
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Figure 1: Segmentation of the ECAL calorimeter.

1.2.1 ECAL Response Functions Xi(y}

In this way the energy response of any ECAL segment { to an electron entering the front of
ECAL at height y with energy E was determined. The fractional {or normalized) response.
Xi(y, E), for a given geometrical configuration was found to be reasonably independent
of energy in the range 5-30 GeV. Hence we summarize calibration data with the energy-
independent response X;(y), where the normalization condition is

Z—Xi(y)Zl'- (1}

if  is not too near the edge of the calorimeter. (Do we need a remark about special treatment
for y near the top of ECAL?)

In Kostya's analysis longitudinal segment 4 is ignored and the signals in segments 1-3
added. He also groups the horizontal segments in a given row into a logical inner segment /
consisting of the two inner physical segments, and a logical outer segment O consisting of
the two outer physical segments.

Further, Kostya chooses the ADC gain conversion constant so that the energy depositéd
by an electron in the inner segments is called 100% of the electron’s energy. That is,

ZA’I.i(y):: 1 {

o

. ot
where subscript [ refers to the inner segments.
The ECAL calibrations revealed that the ratio of the energy deposited in the outer

segments to that deposited in the inner segments is 0.0713. Therefore,

Z_\'o,,‘(y) = 0.0713. (3}
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Figure 2 shows that calibration data for response functions X; and Xg, along with fits
described below.
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Figure 2: Top: the response function X;(Ay) for inner columns of the ECAL,
summed over longitudinal segments 1-3. Bottom: function Xo(Ay) for outer
columns. Circles = data; curve = calculation based on eq. (7).

1.2.2 The Response Kernels Ki(y,y’)

Guided in part by EGS simulations, Kostya further analyzed the calibration data to extract
what he calls the response kernel K;(y,y’), where an electron enters the ECAL at height y
and deposits fractional energy K/1.0713 in a horizontal slice at height 3’ within segment i.
To a good approximation the kernel depends on positions y and y' only through the absolute
value of their difference: |y —y’|. The factor 1/1.0713 in the definition of K arises from
Kostya’s convention that the channel gains are adjusted until the nominal energy deposited
in the inner segments is exactly the incident energy, and the nominal energy deposited in
inner + outer segments is 1.0713 times the incident energy.

There is not a separate kernel for each segment 4, but one functional form for each class
of segments that differ only by row number. In particular, all segments in inner columns
have kernels of the form

Ki(y. o) = wem(-—ézil— yl/b) (- w)expé;y —y1/b) (4)
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and all segments in outer columns have kernels of form

p(—ly —¢'[/bs) 5)

. n_ ex
Ko(y.y") = 0.0713 o .

In Kostya's analysis, b = 1.940, b, = 9.561,b; = 16.908 and w = 0.703. For Glenn's analysis
the coefficients b and w vary with longitudinal segment, and each kernel has an overall
normalization factor less than 1.

The kernels are normalized (by Kostya) to

f Ki(y.y)dy' =1,  while j Koly,y')dy’ = 0.0713. (6)

The segment response data, X;(y), can now be represented in terms of an integral over
the response kernel. Thus

Xitw) = [ Kty )y @

where row i spans the interval [y, yi41)- The normalization conditions (2) and (3) are satisfied
in view of eq. {6). Figure 2 shows curves based on eq.(7).

1.3 Backgrounds

Signal electrons can only enter the front of the inner columns. However, many Compton-
scattered electrons initiate showers in the beampipe and other shielding above the ECAL.
causing a sprav of electrons and photons into the top and back of ECAL. This is the principal
type of background in the ECAL. and it is called ‘splash’ within the E-144 group.

There also exists electronic crosstalk at the level of a few percent between various seg-
ments of the ECAL.

The *splash’ background has been characterized by Glenn using z-t scans (E-144 Col-
laboration Meeting. Sept. 1995). The key insight is that splash is largely due to showers
initiated by n = 1 Compton scattered electrons.

When ECAL is positioned to detect nonlinear Compton scattering of n > 2 this signal is
very sensitive to the time offset between the electron and laser pulses. However, the n =1
scattering signal is much less sensitive. Thus as a time offset is introduced there is a region in
which the n < 2 scattering has vanished but substantial # = 1 signal remains. Corresponding
to the latter is “splash’ detected by the ECAL. Show a figure here. In this way the pattern
of splash over ECAL segments can be determined.

In Kostya’s analysis the ratio of the splash background in the inner segments of row i to
that in the outer segments is called L;;. This ratio is is largest when ECAL is positioned
close to the electron beam, and hence close to the trajectories of n = 1 Compton-scattered
electrons. : -

Figure 3 shows the L. To a first approximation the ‘splash’ ratio L is only a function
of the y-coordinate of the ECAL row.



Splash coefficients L_Ii vs Ecal position

(] L4 L : : B
'E 'g 2
5 = g SN ; :
g g L , H :
o ® 44 T e Rt
i .......;.,.ﬁ,.‘.......5\..................?......
bt dt 0o Loy e 1y
50 100 150

Row 2 Posltion,mm

Backgrourd C/O pads

100 200
Row 3 Position,mm Row 4 Posltion,mm

Figure 3: The ‘splash’ coefficients L;; as function of ECAL vertical position.

2 The Main Analysis Algorithms

The nonlinear Compton Scattering process produces an energy spectrum f(y) of scattered
electrons hitting the ECAL at height y. Because of fluctuations in the e-laser overlap this
spectrum varies from pulse to pulse. The general strategy is to reconstruct the spectrum f

for each pulse and then sum over pulses.
Of course, we cannot fully reconstruct a continuous spectrum such as f from data in
a detector with a finite number of segments. Rather, what we desire to reconstruct is the

integral F; of the spectrum f over segment i:

Fo= """ 1)dy" (8)

Yi

The energy D; observed in segment 7 during some pulse is related to the Compton spec-

5

le3




trum [ by

D= [duft) [ Kilysy' = [ dufto)Xitu), (©)

recalling eq. (7).

2.1 Overview of the Methods
2.1.1 Kostya

Kostya's approach is to determine for each pulse a matrix Mj; such that the observed data
D; is related to the desired spectrum F; by

D, = ZM‘f'F}’ (10)

and then invert this matrix to yield

F= Z Ri;D;, where Ri; = f\ff,-}j. (11)
J
The matrix Af;; is found by an iterative process described in scc. 2.4.1 below in which the
integrals (9) are performed analytically for a ‘polyline’ approximation to spectrum f derived
from the F: of the previous iteration. The initial hvpothesis is that /; = D;. Only two
iterations are used to find the reconstructed Fi.
In Kostya's approach index ¢ runs from 1 to 4, corresponding to the top four rows of

ECAL.

2.1.2 Glenn

Glenn's approach is based on the observation that the desired reconstruction (11) can be
combined with eq. (9) to write

Fi= Y RuD; = [ dufn) R Xo(w) = [ duftldo). (12)

where

gily) = 3 By X (y). (13)

Comparing eq. (13) with eq. (8) we see that the g; (called ‘aperture functions’ by Glenn)
should obey :

(14)

1, i <y < Yigns
Qf(y) =

0, otherwise.

Glenn finds the matrix elements R;; for a given geometric configuration of ECAL and shield-
ing by a X?-minimization process involving the g;. Briefly

'R,'J'_\" Ly — gl Yk
\QZZ(ZJ ;(yQ) g(ya)). 05)

ik Oix
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where the deviates are evaluated at yx spaced 1 mm apart. Some art in choosing the ‘errors’
(or tolerances) oy; is required, as discussed further in sec. 2.4.2.

In Glenn’s approach index ¢ runs over all segments of ECAL.

A sense of how well the procedure works is given in Fig. 4, which shows the aperture
functions g; for four rows in ECAL.
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Figure 4: The aperture functions defined by eq. (13) for the top four rows of
ECAL. (What longitudinal segments are involved?)

2.1.83 Remark

In the absence of background the analyses of Glenn and Kostya proceed by somewhat differ-
ent paths to arrive at the common goal, egs. (11) and (12). To help show the commonality of
the approaches it would be extremely interesting if Kostya’s M;' could be used to evaluate
the four aperture functions g; defined by eq. (13). (Since matrix M;; varies slightly from
event to event this should be done for a number of events and the results superimposed. I
predict that Kostya’s approach would produce results very similar to those in Fig. 4.)

2.2 Overview of the Background Subtraction Techniques

(It would be good to have a figure that gives a sense of typical signal sizes in the inner and
outer segments of the top 4 rows of ECAL.}

2.2.1 Kostya

As noted in sec. 1.3, about 93% of the energy from Compton-scattered electrons is deposited
in the inner columns of ECAL. However, energy from background processes in more uniformly
divided between the inner and outer columns. Kostya’s background subtraction method
is an extension of the simple prescription that the Compton signal could be obtained by
subtracting the energy in the outer segments from that in the inner segments.
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Let S designate energy deposited from Compton-scattered electrons entering the front
of ECAL and B that deposited by the background processes (predominantly ‘splash’ from
scattered electrons that hit shielding rather than the front of ECAL). Then the observed
energy D; in the inner columns can be written as a vector with index 7 suppressed:

Dy =Dys+ Dip. (16)

We introduce vector Do as the observed energy in the outer columns of ECAL. This is.
of course, partly due to the small Jeakage from electrons that enter the front of ECAL and
partly due to ‘splash’ energy. So we write

Do = Dos+ Do.s. (17)

Just as the Compton signal Dy s in the inner segments can be related to the Compton
spectrum vector F by eq. (10) rewritien as

Drs=MF, (18)
‘n terms of matrix Af, there exists a matrix N such that the Compton leakage signal Do s
in the outer segments is related by

Dos=NF. (19)

Details of matrix N will be given in sec. 2.4.1 below.
The key to the background subtraction is that we can relate the background energy m
the inner segments to that in the outer segments according to

Dip=LDo 5. (20

where matrix L is diagonal, with diagonal elements that can be determined from z-{ scans

as described in sec. 1.3.
Once matrices L and N are known the analysis is readily completed. The observed energy

in the inner segments can now be written

Di=Djs+Dip=MF+ LDop. (21
while that in the outer segments 1s

Do=Dos+ Dop=NF+ Dos. (22)
On subtracting L times eq. (22) from eq. (21) and noting eq. (20) we have

Dy — LDg = [M — LN]F, (23)

s

and hence

F =[M— LNJ™(D; - LDo). (241

L
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2.2.2 Glenn

In Glenn’s approach the background energy in segment 7 is written as B;. We note that
the background in dominated by showers of n = 1 Compton scatters (rather than nonlinear
Compton scatters) so we expect that vector B; varies from event to event only in overall
normalization. The relative values of B; can be determined from z-t scans. (Again, I don’t
know exactly how this is done; the full writeup should include an explanation of this key
point.)

The reconstruction matrix R;;j introduced in egs, (11) and {12) should produce no signal
when applied to the background vector:

> R;B; =0 (25)
J
This condition is enforced during the determination of the R;; by adding a term to the x*:

(Ej Ri; X;(yx) —gi(yk))2 N (Ej RUBJ)?

3 7

2 =93
o Lt 2
ik O.fk (e

where the tolerance ¢’ must also be judiciously chosen.
J )

2.2.3 Remarks

We can get a sense of how Glenn’s and Kostya’s subtraction methods are related by recalling
that Glenn’s index 7 runs over all segments, but Kostya’s does not.

First I imagine that Glenn’s analysis summed over longitudinal segments just like Kostya’s.
(1 may be wrong but I think this is a benign assumption.} Further, I restrict Glenn’s analysis
to the top 4 rows of ECAL. (This also is benign as these is essentially no signal in the lower
rows.) Then Glenn’s 7 would run from 1 to 8, 1-4 being the inner pads of the top 4 rows,
and 5-8 being the outer pads of the top 4 rows.

In this approximation I can write Glenn’s data vector Dgjenn as being made up of Kostya’s
vectors Dy postya and Do kostye according to

DI Kosi

1 ya ~

DGIenn - . (2'()
DO.Kostyu

Likewise the background vectors could then be related by

LD ostya
BG'lenn = OB Kosty . (28)

DO.B‘Kostya

We see that the diagonal elements of Kostya’s (diagonal) matrix L should simply the ratios
of certain elements of Glenn’s background vector.” Thus L,; = B;/B;, ele. (It would be good
to check how well these relations are satisfied in practice.)
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The reconstructed spectrum should be related by

F’os a
FGilenn = Kosty ) (29)

0

since there should be no Compton signal incident on the outer pads.
- Hence the translation of Kostya’s eq. (24) into Glenn's form (12} is

M —LN)"'  —[M-LN]"'L D Kostya
FG!enn = RGfenn DG!enn = [ } [ ] . IiResty . (30)
0 0 DO,h’asiyu

We see that Glenn’s eq. (25) is automatically satisfied in Kostya’s analysis:

M~ LN}-!  —[M - LNJ"'L LD ostya
RGlenn BG!enn = [ } [ ] . ©.8.Rosty = 0. (31)
0 it DO,B,}\'osiyu

That is. the analvsis matrix R that takes the observed data D into the underlving Compton
spectrum F also takes the background into the null vector. The reaffirms that the main
difference between Glenn’s and Kostya’s approach is in their procedures to calculate matrix
R.

2.3  Overview of Error Estimates

Statistical error related directly to the number of electrons hitting the ECAL are calculated
by Christian’s program that further processes the results of Glenn’s and Kostya's analyses.
The latter analyses assign errors that represent the systematic uncertainty in the analysis
procedures due to limitations of the numerical algorithms.

2.3.1 Kostya

Nostya's analysis uses an iterative procedure to unfold the Compton spectrum F; starting
from an initial hypothesis. Hence it is easy to check how well this procedure works by
generating trial data from a known hypothesis f(y), calculating both the corresponding
ideal spectrum F; and the ‘observed’ data I;, and finally reconstructing a spectrum F; from
the D;. This is done in the presence of some model background as well. _

We could then repeat this check for a reasonable class of trial spectra f(y)} and accumulate

error estimates:
of = ((Fi = FY"). (32)

I gather that a procedure like this is used to estimate the eirdr on results from row 1.
but not for the other rows. The result of the study was that o[ Fy = 0.05.

Rather. Kostva notes that the data in a lower row is heavily influenced by feeddown from
the rows above, given that the Compton spectrum is steep!y falling. He therefore argues that
the biggest uncertainty in row j is {he uncertainty in the feeddown from rows with < J. In
this wav he propagates the uncertainty in row ;7 all the way back to that in row L.
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To keep track of the feeddown Kostya argues as follows:

Fi= Z(M LN)™D, - E(M LN)Y™LDo, (33)

according to eq. (24). He then supposes that the relative error on each of these terms is
just o,/ Fy, which is justified to the extent that feeddown from row 1 dominates {or that the
relative error is the same everywhere). Then

yoz 1
I'—Fl

In any case, Kostya’s procedure should be checked against a more extensive use of eq. (32).

S(M — LNY-'D;

i J

2 2
+ [Z(M - LN)“‘LDO} . (34)

2.3.2 Glenn

At present I have no understanding of how Glenn assigns errors,

2.4 Some Detalls
2.4.1 Kostya

Kostya solves eq. (24) by an iterative procedure in which each iteration begins with a hypoth-
esis for the spectrum F; that we are trying to reconstruct in ECAL. The initial hypothesis
is that F; = Dj;, the observed spectrum in the inner columns. The procedure is declared to
have converged after two iterations.

A. Calculation of Matrices M and N

Corresponding to a set of I we need a continuous function f(y) so that the integrals (9)
can be performed and the coefficients A,; read ofl according to eq. (10). To make it easy to
do the integrals analytically, Kostya chose to approximate f(y) as a polyline. Further, it is
useful that the endpoints of the line segments are at row boundaries. Then f(y) over row 7
is characterized by the central value F; and a slope m;. See Figure 5,

Kostya’s analysis applies to the top four rows of ECAL, so we must determine four slopes
m;. However, the slopes of the polyline through the four F; is not unique until one additional
point is fixed. This is taken to be the intercept of the polyline at the boundary between
rows 4 and 5. That intercept is determined by a linear extrapolation of values Dy and Dsg
to the 4-5 boundary. If the extrapolated intercept is negative an intercept of zero is used.

For F; that are monotonically decreasing and always positive the slopes m; are always in
the range —2 < m; < 0.

Apparently a check was made that the polyline f(y) remains positive over all four rows
and some action was foreseen if this test failed. In practice there were no cases in which the
polyline went negative.

For any the polyline f(y) the integrals {9) can be carried out using the kernels K; and
Ko summed over ECAL longitudinal segments 1-3. When the results are written in the form
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ECAL Row

Figure 5: Construction of a polyline from a hypothesis to the spectrum £} in
ECAL.

10) the matrix z‘f{‘ does not depend directly on the 1‘,‘, but only on the slopes 1ty in the
J p v - I
Siﬂ'lplﬁ‘ form

0.77 0.10 — 0.024m; 0.011 —0.0015m5 0.0021 ~ 0.00027m, _
My = .10 + 0.024m, 0.77 0.10 — 0.024m3 0.011 — 0.0015m,
0.011 + 0.0015m, 0.10 + 0.024m>» 0.77 0.10 — 0.024my
i 0.0021 =+ 0.00027m; 0.011 +0.00153m,  0.10 + 0.024m3 0.77 |
(35)

The diagonal element A;; tell us that on average 77% of an electron’s energy is deposited
in the inner columns of the same ECAL row that it enters. Looking at column 2 of the
matrix, we see that if the Compton spectrum were flat {m = 0) then 10% of an electrons
energy would be deposited in the row above and 10% in the row below the one it entered.
For a nonuniform spectrum with my < 0 the electron more probably enters the top of the
row and so more energy leaks into the row above than the row below, as described by Afya
and Ma, for an electron entering row 2, elc.

We can also calculate the energy deposited in the outer columns by Compton electrons
entering the inner columns with a spectrum f(y) approximated by a polyline. The result s
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described by matrix N introduced in eq. (19):

-

0.025 0.014 — 0.0011m,  0.0055 — 0.00043m3 0.0021 — 0.00017m,
Ny = 0.014 + 0.0011mn, 0.025 0.014 — 0.0011ms  0.0055 — 0.00043m4
0.0055 + 0.00043m;  0.014 4 0.0011m, 0.025 0.014 — 0.0011m4
| 0.0021 + 0.00017m; 0.0055 4 0.00043m,  0.014 4 0.0011m3 0.025
(36)

We see from M;; that over 98% of the energy is accounted for, taking all the slopes to
be zero and summing over a column. This corresponds to the normalization convention (2).
Similarly, summing over a column in matrix N we find 6% of the energy has leaked into the
outer columns, corresponding to (3).

In practice, Kostya makes adjustments to the i1 elements of (35) and (36) to account
for energy leaking down into ECAL from the showers due to Compton electrons that hit
tungsten plate above it. Addition adjustments are made to bring the results into better
agreement with the calibration data. The revised matrices are

0.87 — 0.081m, 0.089 — 0.016m;  0.0083 — 0.0007m3 0.0035 — 0.0007m4 f
My = 0.097 + 0.0077m, 0.789 0.089 — 0.016ms  0.0083 — 0.0007m4 ‘
0.0104 — 0.0024m,;  0.089 + 0.016m, 0.789 0.089 — 0.016my
| 0.0056 — 0.0014m; 0.0083 + 0.0007m,  0.089 + 0.016m3 0.789 J
(37)
and
[ 0.026 — 0.0083m, 0.010 — 0.0010m,  0.0055 — 0.00043m3 0.0021 — 0.00017m,
N, = 0.014 4 0.0011m, 0.025 0.014 — 0.0011m3  0.0055 — 0.00043m4
0.0055 + 0.00043m; 0.014 + 0.0011m, 0.025 0.014 — 0.0011my
| 0.0021 + 0.00017m; 0.0055 + 0.00043m,  0.014 + 0.0011ms 0.025
(38)

(Some elements of N not yet right...)

2.4.2 Glenn

A major step in Glenn’s approach is the minimization of the X? given in eq. (26) to find the
-reconstruction matrix K. For this the ‘errors’ or tolerances o, and ¢’ must be stated.

The tolerance function oy is shown in Fig. 6. Recall that the aperture function g;(y)
is unity for 8 mm about the vertical center of a row and zero elsewhere. Glenn chose to
enforce a tighter tolerance on the aperture function where it should be zero than where it
should be one, and graded the tolerance in the regions 7-10 mm from the row center for best

results.
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Figure 6: The tolerance function o, as a function of vertical distance from

the center of a Tow.

Once matrix K has been calculated we obtain a measure of its validity by calculating the
aperture functions via eq. (13). Figure 7 shows the resulting aperture functions for the top
four rows of ECAL on a log scale {Fig. 4 shows the same functions on 2 linear scale}.

magneude of reSpISE BN

T K RN o, T =
; L - Row 1
1 . Aew 2 e
: . Hiw3 —t -
3 -a T Q
c1 b | Pl =
¥ l v =N & 3
E3 I j !
g P a
z i }
= 1 [ i - . .
ot i ; i
.-' S
! 3
¥ i iy
oy i H h . i -
©.001 LTS R L L '\n,‘ o oah »
<20 -10 0 10 20 3 40 70
¥ pogition of penot beae (M)

Figure 7: The aperture functions defined by eq. (13) for the top four rows of
ECAL.
(T would like to understand more about tolerance o' and whether there is any measure
of how well the backsround subtraction works.

Figure 8 was provided by Glenn. but 1 need him: 10 explain it.)
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3 Comparison of Numerical Results

Figures 9-16 were recently made by Kostya to compare the results of his and Glenn’s analyses.
They were extracted from Kostya’s Home Page. I believe essentially all circularly polarized
nonlinear Compton data from March ’95 is summarized in the plots.

A few remarks:

1. Figures 9 and 13 compare F; gostya and Fj gienn for the top four rows of ECAL. In
rows 1 and 2 there seem to be several subgroups of data where within each subgroup
the agreement between Glenn and Kostya is remarkable. However, there seems to be
different normalizations between Glenn and Kostya. clearly it will be interested to
subdivide the data according to run number or ECAL positions to see if the subgroups
are correlated with this,

2. Results from row 4 show some correlation between Glenn and Kostya - but the corre-
lation is so weak that we should examine carefully whether we retain this row in the

final results.

3. Figures 11-12 and 15-16 shows that the error estimates of Glenn and Kostya are similar
in rows 1 and 2, but with Glenn assigning somewhat smaller errors in row 3, and
assigning errors much smaller than Kostya in row 4. Judging from the correlation plots,
Figs. 9 and 13, I infer that the larger error estimates of Kostya are more realistic.

4, The error correlation plots, Figs. 10 and 14 suggest that the analysis is unreliable in
case of very small signals in any row. This should be looked into further.
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ir circulor Morch95 dato, two ECAL reconstructions
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Figure $: Comparison of results from Glenn and Kostva for infrared laser data.
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Normalized difference

Normalized difference

ir circulor Morch395 data, difference normalized to the sqrt(errori**2+error2++2)
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Figure 13: Comparison of results from Glenn and Kostva for green laser data.
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Figure 14: Comparison of results from Glenn and Kostya for green laser data.
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Figure 15: Comparison of results from Glenn and Kostya for green laser data.
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Figure 16: Comparison of results from Glenn and Kostya for green laser data.
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