Photodisintegration of He³ by Polarized Gamma Rays

Kirk McDonald

August 7, 1970

We have received a preprint with the above title from Frascati by Fabbri, Picozza and Schaerf (IMF-69/82). They report an asymmetry in the cross-section for γ + He³ --> p + d for E $_{\gamma}$ = 260 MeV, and $\theta_{c,m.}$ = 90°:

$$A = \frac{\sigma_{11} - \sigma_{12}}{\sigma_{11} + \sigma_{12}} = 0.36 \pm 0.08$$

I have used the partial wave analysis of my previous note to give a form for the asymmetry. Again I consider only the transitions

E1 -->
$${}^{2}P_{1/2}$$
 labelled P_{1}

E1 --> ${}^{2}P_{3/2}$ P_{3}

M1 --> ${}^{1}S_{3/2}$ S_{3}

E2 --> ${}^{2}D_{3/2}$ D_{5}

In this case, all three cross-sections ζ_0,ζ_1 and ζ_7 have the form $A + B\cos\theta + \sin^2\theta (C + D\cos\theta + E\cos^2\theta)$

where

Note that $G_{1} + G_{1} = 2 G_{T}$

Using these expressions, the asymmetry at 90° is

$$A = \frac{P_3^2 + 2ReP_3^*P_1 + 2(D_5 - D_3)^2}{S_3^2 + (2/3)(P_3 - P_1)^2 + P_3^2 + 2ReP_3^*P_1 + 2(D_5 - D_3)^2}$$

From the experimental value of A $\sim 1/3$ we conclude that

$$S_3^2 + (2/3)(P_3 - P_1)^2 \le 2P_3^2 + 4ReP_3^*P_1 + 4(D_5 - D_3)^2$$

Which tends to indicate that the contribution from S_3 is the largest of all at this energy. If this is true it is good news since the $\Delta(1236)$ would appear in this amplitude around this energy.

In the Frascati paper reference is made to transitions from the $^{14}\mathrm{D}_{1/2}$ part of the He 3 ground state. I have not included any of these in my analysis. They are discussed by Bailey, Griffiths and Donnelly in Phys. Letters $2\mathrm{LB}$, 222 (1967). An experiment at E $_{\gamma}$ = 15 MeV to look for these transitions is reported by Belt, Bingham, Halbert and van der Woude in P.R.L. $2\mathrm{L}$, 1120 (1970).