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Accelerator P hysics:

T'he study of energy transfer between charged-particle

beams and strong electromagnetic fields.

Heroic era of accelerator physics culminated in in-
vention of the AGS and colliding beams in storage

rings. -



_______________________________ New Ideas: 1970-1990 e

1. Inverse Processes

Any reasonably coherent charged-particle radiation

mechansim can be inverted to provide acceleration.

Present interest dates from the (re)inve-ntion of the

free electron laser (Madey, 1970).
Inverse free-electron laser (laser 4+ wiggler).

Inverse Cerenkov accelerator (laser + axicon focus

+ gas).

Inverse Smith-Purcell acclerator (laser + grating).



New Ideas: 1970-1990

2. Collective Effects
‘Smoke-ring’ accelerator.

Plasma beat-wave accelerator.

Wakefield accelerator.




~ New Ideas: 1970-1990

3. Power Sources
Lasers.

Laser-switched capacitors.
Gyroklystrons.

Relativistic klystrons.

Materials limitation: atoms ionize ‘instantly’ in fields

of ~1eV/A =10 GeV/m.



New Ideas: 1970-1990. |

4. Basic Interactions in Strong Fields

e or 7y + laser: nonlinear Compton scattering, eTe~

production.
e or v + crystal: channeling, eTe™ production.

e + colliding bunch: beamstrahlung, e*e~ produc-

tion.
High-energy /accelerator physicé:

QED (v7v) production of Higgs in heavy-ion colli-

sions.
v+ e — W + v study of W magnetic moment.
v+ v — X at high energies.

[Near-field gravitational radiation from bunched beams. ]



Particles and Fields. . e

1800’s:
Experimentalists study fields (Ampere, Faraday...)

Theorists study. particles [atoms] (Maxwell, Boltz-

mann...)
1900’s:
Experimentalists study particles (Rutherford...)

Theoristis study fields (Einstein, Heisenberg, Wein-

Particles are quanta of fields,

but in Standard Model, the Higgs background field

i1s more important that the Higgs particle...
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¢ O. Klein (Z. Phys. 53, 157 (1929)) noted that the
reflection coeflficient is infinite when Dirac elec-

trons hit a steep barrier (Klein’s paradox).

o F'. Sauter (Z. Phys. 69, 742 (1931)) deduced that
the paradox arises only in electric fields exceeding

the critical strength:

m2c3

eh

Eui = = 1.32 x 10" Volts/cm.

e At the critical field, the voltage drop across a

Compton wavelength is the electron rest energy:
h 2

eECI-it r — = mc .
mc

o Af the critical field the vacuum ‘sparks’ into ete™

pairs (Heisenberg and Euler, Z. Phys. 98, 718
(1936)).



. Where to Find Critical Fields =

e The magnetic field at the surface of a neutron
star approaches the critical field B, = 4.4 x 1013

Gauss.

- @ The maximum electric field experienced by an

atomic electron near a nucleus of charge 7 is

Ze
~ :2‘" — ZO‘fEcrit',

C
e During heavy-ion collisions where Ziyia = 27 >

- 1/a, the critical field can be exceeded and ete”

production is expected.

e The line spectrum observed in positron produc-
‘tion in heavy-ion collisions (Darmstadt) is not

understood.
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Figure 9: Results of a preliminary analysis of U 4 Th collisions near
5.87 MeV/c [4). The (E.+ + E.-) projections are for two subsets of
data gated on beam energy, heavy-ion scattering angle and et or e~
TOF chosen to enhance the prominent sum lines at ~ 810 keV and ~

620 keV, respectively.
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A new embedding of quantum electrodynamics
in a non-Abelian gauge structure

Stephen L. Adler
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ABSTRACT

Motivated by the anomalous electron-positron peaks observed at
GSI, I propose a novel embedding of quantum elecirodynamics in an SU{(2)
non-Abelian gauge theory, inspired by quaternionic quantum mechanics.
The construction eliminates the Dirac sea,. while keeping the electron-
positron fleld as the only fermion field. The gauge partners of the photon
are doubly charged gluons with the quantum numbers of di-fermions, The
electron bare mass vanishes by virtue of the SU(2) gauge symmetry. I
postulate that a vacuum condensate breaks the SU(2) down to U(1), per-
mitting the genera_tion of a dynamical electron mass and leaving the photon
as the only massless gauge gluon, and further conjecture that the GSI phe-
nomenon arises from restoration of the unbroken vacuum in strong fields.
The model avoids Witten’s global SU(2) anomaly when extended to con-

tain the charged leptons in an even number of familjes.

To be submitted to Physics Letters.



e The electric field due to a laser as seen in the rest

frame of a high-energy electron is
B = ’)’(1 + ,B)Elab ~ 27Elab

. The critical field is achieved with a laser beam of

intensity
I - Elz;,b . E(::zrit

37T 442 37T
Thus for 46-GeV electrons (v = 9 x 10*) we can

achieve I,y with a focused laser intensity of 1.43x

10" Watts/cm?

(=2 10%" photons/cm3, Fj,, = 7x10% Volts/cm).

e Such intensities are now attainable in table-top
teraWatt (T°) lasers in which a Joule of energy is
compressed into one picosecond and focused into

a few square microns.
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Figure 2: Proposed layout of the interaction region.

Table 1: Parameters of three beamline options for interaction point IP1 in the
FFTB. '

Parameter ' FFTB Beam Tune
Nominal Parallel Point
Low-8 . N Focus

oe/y (pm) at the FF 0.95/0.055 0.95/0.055 30/20

Oemax (pm) after FF (quad QP3) 2730 . 2700 121

Oy max (pm) after FF (quad QP5) 2883 2479 65

o.)y (pm) at IP1 ' 2314/1601 2479/1815 75/57

oerfy (prad) at IP1 54/88 1.0/0.5 3.2/6.6




. E-144 Physics Program =

1. Nonlinear Compton Scattering: e +nw — e’ 4+ 7/

e Semiclassical theory = data will diagnose laser
intensity.
e Provides v beam for light-by-light scattering.
2. Beamstrahlung
o = 10" V/cm in bunches at future ete™ col-

liders.

® ¢ NWiser laser interactions with large n mimic

beamstrahlung.
e ¢ + nw — e'ete” is analog of important pair-
production backgrounds in future colliders.
3. The Multiphoton Breit-Wheeler Reaction:
v+ nw — ete”
¢ Might show anomalous structure in ete™ in-

variant mass when F > F .

6



| 4Cop10us ........... ete” Production =~ |

e ete™ pairs from e-laser collisions could be best
low-emittance source of positrons.

¢ No Coulomb scattering in laser ‘target.’

° Multlple Compton scattermg ‘cools’ the pOSItI‘OTl%o

e When F 2 E.; the laser beam is effectively

more than a radiation length.

e Production is optimal for ~ 150 GeV elec-

trons.



“...demonstrate in the laboratory a laser power den-
sity adequate to achieve interesting values of the pa-
rameter T (= 1.0 £ 0.3) in order to obtain final ap-

proval.”

E* . 2'7E1a,b o 1

T =
" Euit B 1.4 x 1019 Watts/cm?

for a 46-GeV electron beam.



. Laser Progress to Date — J une 1992

(D. Meyerhofer, U. Rochester)

‘e Laser system performs at diffraction limit.

e Pulseenergy...........c.iiiiiiiiii 2J
o Pulse FWHM.................. ...l 1.4 ps
e Peak power....................... 1.4 teraWatts
e Focal-spot area......................... 26 pum?
‘e Peak intensity .............. 6 x 10'8 Watts/cm?
e e, 0.7
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~ Nonlinear Compton Scattering

& = e (e ) B+ a2 - 2020 } oo

In the above equations the index n labels the number of photons absorbed from the
field of the laser and the parameters u, = are defined through

~_ Y " ey ne 20
e ’ Ymax 1+ 9% +nz’ z=nylty m\Ju(l-l-q’ u)' (20)

(72
2=4w0Ee/m2} y:'E':.Sym=1+

10*
———————— \ -
107
3 [ Total rate = 6.91506-06 photons/e
é P Kisin-Nishina = 7.0023¢-06 photons/e ™~
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Figure 4: Differential cross section for multiphoton scatteringof a A =
-1,054 nm laser pulse from 50-GeV electrons. '



The Multiphoton Breit-Wheeler Process

Wy + w — e+e“

3
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Figure 12: The calculated rate of pair production as a function of the

pair mass as measured in the laboratory, for the conditions of Fig. 10.
The intrinsic line spectrum is smeared into a continuurn as the electrons

leave the strong-field region.




~_Long-Lived ete™ State?

Darmstadt peaks could be due to an e*e™ state with

lifetime as long as 1 ns.

F-144 will have reduced sensitivity when yer > 100 m,

i.e., for 7 > 10711 s,

A sweeping magnet after the y-laser interaction point
would eliminate the ‘background’ from prompt ete™

pairs.

i3



.. Rates

e When Iv ~ F_; all cross sections of interest are

107%6-10727 ¢m?.
e With 1 laser pulse per second, and 10 e’s per
bunch, typically have 0.1-10 events second.
Backgrounds
e The QED processes we study are the dominant
ones in e-laser collisions.

¢ Detector backgrounds from synchrotron radiation
and E-M showers must be suppressed by masking

and collimation.

14



__Responsibilities =~~~

e-beam diagnostics
- RFE timing
Laser & spectrometer buildings

e Pair Spectrometer........ e Princeton

v-beam diagnostics
e Positron spectrometer.................... SLAC

e Laser systems........... P Rochester

Laser-beam transport and diagnostics

15



- E-144 Schedule =

e Spring-Fall '92: build FFTB, modify beam dump,
construct laser building.
Rochester group begins residence at SLAC.
e Winter-Spring '93: Commission FFTB, begin ac-
~ celerator physics program, build laser beam trans-

port.

e Summer ’'93: Build extension to FFTB for pair
spectrometer, first e-laser collisions (with detec-

- tors inside radiation area).

Princeton group begins residence at SLAC.

e Fall ‘93: Initial runnin_g' of E-144 with v’s from
nonlinear Compton scattering into pair spectrom-

eter.
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