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Motivation and Goals

e The Higgs mechanism implies that elementary particles

have important interactions with strong background fields.

e Only with electromagnetism can intense, controllable,

macroscopic fields be created in the laboratory.

e Kxplore the validity of QED for electromagnetic field
strengths in excess of the ‘critical field strength’

m2c3/eh — 1.6 x 1016 V/cm.

e At the critical field, the voltage drop across a Compton

wavelength is the electron rest energy:

h
eFB.i - — = mc?.
mce

e At the critical field the vacuum ‘sparks’ into ete™ pairs

(Heisenberg and Fuler, Z. Phys. 98, 718 (1936)).

e ixplore QED in the realm where multiphoton

interactions dominate, i.e., when el /mwc > 1.



Critical Fields in e-Laser Collisions

e The electric field due to a laser as seen in the rest frame

of a high-energy electron is
* ~
E* = (1 + B) By ~ 271

e The critical field is achieved with a laser beam of intensity

2 2
] = Elab . Ecrit

3T 442377
Thus for 46-GeV electrons (v = 9 x 10*) we can achieve

Fi with a focused laser intensity of 1.4 x 10!Y Watts /cm?

(= Epp = 7 x 10'° Volts/cm).

e Such intensities are now attainable in table-top teraWatt
(T3) lasers in which a Joule of energy is compressed into

onc picosecond and focused into a few square microns.

o At these intensities the photon density is ~ 10%7/cm?,
and the radiation length of this ‘photon solid’ is
~ A a =~ 100 pm.



. E-144 Physics Program

1. Compton Polarimetry

e Both the E-144 laser and electron beams are polarized.

e Compton polarimetry provides a basic check of the
E-144 apparatus, as well as a confirmation of the SLC

beam polarization.
2. Beamstrahlung

e [/ ~ 10" V/cm for the E-144 laser, and for electron

bunches at future ete~ colliders.

e e + NWiaeer laser interactions with large n mimic
beamstrahlung.
e e+nw — e'ete” is analog of important pair-production

backgrounds in future colliders.
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e Semiclassical theory = data will diagnose laser
intensity.

o Provides v beam for light-by-light scattering.
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o ete™ pairs from e-laser collisions could be best

low-emittance source of positrons.
e No Coulomb scattering in laser ‘target.’

e Positrons largely preserve the geometric emittance of

the electron beam = ‘cooling’ of invariant emittance.
e Can produce 1 positron per electron if #* > Fcrit.

e Production with visible laser is optimal for ~ 500 GeV

electrons.

[Or use a 50-nm FEL with 50-GeV electrons.|
6. Accelerator-physics spinoffs:

e Nonlinear-optics diagnostic of electron-bunch length

e e-laser technology of K-144 is precursor of e-y and y-v

colliders.



Experimental Ingredients

e l.ow-emittance electron beam

e Terawatt laser

e Synchronization of e and laser beams to 1 psec in time,

and a few pm in space

e Silicon calorimeters for ‘coarse-grain’ detection of e, e™

and y’s
e CCD pair spectrometer for ‘fine-grained’ measurements.

e Data-acquisition system based on PC’s interconnected

via a local ethernet.



TeraWatt Laser Via Chirped-Pulse Amplification

1 Joule in 1 ps = 10'? Waltt.

- Diffraction limited spot area =~ \?(f/D)? =~ 10 um?,
= I ~ 10" W/cm?.

Repetition rate of 0.5 Hz using slab amplifier.

High power pulses can damage optics!

= stretch pulse, then amplify and compress.

short puise

grating-pair
pulse stretcher

amplified, stretched pulse

ampilifier stretched puise

grating-pair ampiified
pulse compressor short pulse

i ka

FIGURE 4. In chirped puise omplification a short optical pulse is strefched ond comprassed by two compensaling
grofing pairs.
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CCD Pair Spectrometer...._._

5D36 magnet followed by two arms of 4 CCD’s cach.
770 x 1150 pixels per CCD; pixel size = 22.5 pm.
= Mass resolution ~ 15 keV at M i, = 2 1\/IeV/c2.

Readout via PC-based frame grabbers.

Top View:
Analysis magnes

KUsed in analysis
' Upstream Box
A
Im
Downstream Box
Y
4
] 10cm
T
'y
[t0cm
Y

Lead Absorber i
46



E-144 History

Oct. 1991: Strong-field QED experiment proposed to SLAC.
Dec. 1991: Conditional approval of E-144 by SLAC EPAC.

June 1992: Memorandum of Understanding between

Princeton, Rochester and SLAC.

June 1992: Demonstration of laser focused to 10*° Watts / cm?

at U. Rochester.

Sept. 1992: Full approval of E-144.

Oct. 1992: U. Tennessee joins E-144 collaboration.
Apr. 1993: SLAC beam test of silicon calorimeters.
May 1993: Lasér shipped to SLAC from U. Rochester.

Aug. 1993: First run of FFTB; tests of e- and y-calorimeters.

L



e-beam polarization measurement;

evidence for quadratic effects in Compton scattering

Sept. 1994: Further studies of nonlinear Compton

scattering: evidence for 2, 3 and 4-photon effects.

Mar. 1995: b5-day run to study nonlinear Compton
scattering, and search for positron production.

First use of CCD pair spectrometer.
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8 shifts dedicated to It-144 during 5 blocks of FF'T'B running.

Simultaneous operation of all components of the teraWatt

laser system.

Operation of a data-acquisition system based on 9 PC’s with

ethernet interconnection.

Synchronization of the laser and electron beam established

to ~ 3 ps, as diagnosed by the Compton scattering signal.
Measurement of the electron-beam polarization.
Testing of a prototype forward CCD spectrometer.

Observation of (noillinear) double Compton scattering of

electrons by the laser.
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—— Measurement of e-Beam Polarization

Laser pulse energy ~ 3 mJ.
Asymmetry zero at 25.4 GeV is in top row of E-cal.

Fit to measured polarization asymmetry in 4 energy bins

yields P.F,; = 0.81 4+ 0.01.

Laser polarization < 0.96 = P, = 0.811):5%,
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First Evidence for-Nonlinear Compton Scattering

Laser pulse energy varied from 10 to 50 mJ (May '94).

[i-cal lowered beyond lincar Compton edge.
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Analysis of first longitudinal segment resolves 1, 2 and 3

electron peaks.
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Scattering

Nonlinear Compton scattering: € + 2Viaer — € + 7.

Double Compton scattering: e + Vaser — € + 71,
e + Yaser — e + Y2-

Both processes are quadratic in laser intensity.
Kinematics of the final-state electrons are identical.
Spectra bf final-state electrons are similar.

Rates are similar in conditions of K-144.

Best distinguished via the final-state photon:
nonlinear Compton scattering = one, higher-energy -;

double Compton scattering = two, normal-energy ’s.

= need CCD spectrometer to resolve the two processes.
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__________________________________ September 94 Run_

Improved doubling efficiency = up to 1 J at A = 530 nm.

Shot-by-shot spot-area measurment for latter part of run.

Observed 20 < A < 100 pm?.

Shot-by shot pulse length measurement not available.
Streak camera = 1.5 < At < 3 ps.

= 3 x 10 < I, < 10 W/cm?.
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Wire scanner in IP1 box = easier setup of e-laser collisions.
laser oscillator rebuilt = improved timing stability.

CW autorcorrelator to monitor oscillator pulsg length.

New slab amplifier.

Single-shot autocorrelator for 1060 nm.

Lnax ~ 10" W/cm?,

Fxtensive x-y-z-1 scans of e-laser overlap.

Installed CCD pair spectrometer.

‘Hi-lo’ e-beam used to reduce backgrounds in CCD’s.
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_Future Run Plans

December 1995;

e Improve laser intensity to design spec of 7 x 10’ W /cm?.
e Continue Search for positrons at IP1 using Si calorimeter.

e Detailed study of nonlinear Compton scattering with CCD

spectrometer.
May 1996 (and beyond):

e FI'TB/E-144 runs possible at beginning and end of SLD

T'UurIls.

o After copious pair created has been demonstrated at IP1,
commision the second interaction region, IP2, for pure

light-by-light interactions.

e Study details of ete™ spectrum with CCD pair

spectrometer.

e Major laser upgrade if warranted by the physics.
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___Proposed Task G FY96 Equipment Budget

Additional computing power needed as data accumulates.

The CCD spectrometer should be made more robust,

particularly the cooling system.

1. Three Pentium computers for online/offline analysis $12k

2. Laser printer .......... .. i $2k
3.4new CCD’s ..o o $4k
4. 1 new CCD readout board (DIPIX) ................ $4k
5. Upgrade to CCD cooling system ................... $5k
6. Upgrade to CCD vacuum system .................. $3k
7. Tek TDS684A digital scope ....................... $25k
8. lest equipment for detector developmet ........... $10k
Total ... .. $65k

The operating budget is considered elsewhere; please note

the significant travel costs associated with operating at SLAC.
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