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o Explore the validity of QED for electromagnetic field
strengths in excess of the ‘critical field strength’

m?c®/ek = 1.6 x 100 V /em.

e Eixplore QED in the realm where multiphoton

interactions dominate, i.e., when el /mwe > 1.




. The Q ED Critical Field Stre ngt h———

¢ O. Klein (Z. Phys. 53, 157 (1929)) noted that the
reflection coefficient is infinite when Dirac electrons hit a

steep barrier (Klein’s paradox).

o I'. Sauter (Z. Phys. 69, 742 (1931)) deduced that the

paradox arises only in electric fields exceeding the critical

strength:
263

m
kb, crit —

= 1.32 x 10" Volts/cm.
e

e At the critical field, the voltage drop across a Compton
wavelength is the electron rest energy:
h .
el — = mc?.
mc

e At the critical field the vacuum ‘sparks’ into ete™ pairs

(Heisenberg and Euler, Z. Phys. 98, 718 (1936)).



Where to Find Critical Fields —

e The magnetic field at the surface of a neutron star

approaches the critical field By = 4.4 x 10 Gauss.

¢ During heavy-ion collisions where Ziotal = 272 > 1/a,

the critical field can be exceeded and ete- production is
expected.

The line spectrum observed in positron production in

heavy-ion collisions (Darmstadt) is not understood.

® Pomeranchuk (1939): The earth’s magnetic field appears
to be critical strength as seen by a cosmic-ray electron

with 10 eV.

e The electric field of a bun(_:h at a future linear collider

approaches the critical field in the frame of the oncoming

bunch.



~_Critical Fields in e-Laser Collisions

e The electric field due to a laser as seen in the rest frame

of a high-energy electron is
E* :7(1 -+ /B)Elab ~ 27Elab

e The critical field is achieved with a laser beam of intensity
_ Elza,b . Egrit
37T 442377

Thus for 46-GeV electrons (y = 9 x 10%) we can achieve

By with a focused laser intensity of 1.43x 10" Watts /cm?
(== 10%7 photons/cm?, I, = 7 x 100 Volts/cm).
e Such intensities are now attainable in table-top teraWatt

(T%) lasers in which a Joule of energy is compressed into

one picosecond and focused into a few square microns.



e E- 1 44 P hy'Si CS- P rog A B 1 1 .

1. Compton Polarimetry

* Both the E-144 laser and electron beams are polarized.

* A measurement of the polarization asymmetry in
Compton scattering provides a basic check of the

E-144 apparatus, as well as a confirmation of the

SLC beam polarization.

2. Beamstrahlung

o I ~ 10U V/cm for the E-144 laser, and for electron

bunches at future ete~ colliders.

® e + NWiyger laser interactions with large n mimic

beamstrahlung.

* et+nw — €e'eTe” is analog of important pair-production

backgrounds in future colliders.



e Semiclassical theory = data will diagnose laser

Intensity.
¢ Provides v beam for light-by-light scattering,
4. The Multiphoton Breit-Wheeler Reaction:
Y+ nw — ete”

* Might show anomalous structure in ete~ invariant mass

When B> F,

rit .



e cTe” pairs from e-laser collisions could be best

low-emittance source of positrons.
* No Coulomb scattering in laser ‘target.’

* Positrons largely preserve the geometric emittance of

the electron beam = ‘cooling’ of invariant emittance.
e Can produce 1 positron per electron if T > 1

* Production with visible laser is optimal for ~ 500 GeV

electrons.

[Or use a 50-nm FEL with 50-GeV electrons.]

6. e-laser technolgy of E-144 is precursor of e-y and ~v-vy

colliders.



Experimental Ingredients

¢ Low-emittance electron beam
o Terawatt laser

e Synchronization of e and laser beams to 1 psec in time,

and a few um in space

e Silicon calorimeters for ‘coarse-grain’ detection of e™, e

and y’s

e CCD pair spectrometer for ‘fine-grained’ measurements.
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.................. . N S trong- ﬁeld QE Experiment o
1. Nonlinear Compton Scattering
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...... . E-144 H ist()ry S S

Oct. 1991: Strong-field QED experiment proposed to SLAC.

Dec. 1991: Conditional approval of E-144 by SLAC EPAC.

June 1992: Memorandum of Understanding between

Princeton, Rochester and SLAC.

June 1992: Demonstration of laser focused to 10'° Watts /cm?

at U. Rochester.

Sept. 1992: Full approval of E-144.

Oct. 1992: U. Tennessee joins E-144 collaboration.
Apil 1993: SLAC beam test of silicon calorimefers.
May 1993: Laser shipped to SLAC from U. Rochester.

Aug. 1993: First run of FF'TB; tests of e- and v-calorimeters

Mar. 1994: Readiness Review
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e-beam diagnostics
RF timing
Laser & spectrometer buildings
Polarimetry optics (with Rochester)
e Laser systems........................ ... Rochester
Liaser-beam transport and diagnostics (with SLAC)

e-bunch-length monitor

¢ Silicon calorimeters (e*, e, y)............. .. Tennessee

Calorimeter readout (with Princeton)

e CCD Pair Spectrometer.................. . Princeton
Data-acquisition system

Optical-synchrotron-radiation monitor
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_ Readiness Review Presentations

Status of the laser system ..... e D. Meyerhofer

Optical transport and e-laser synchronization .. C. Bamber

Polarization Measurment ................... . M. Woods

Primary- and scattered-electron optics ... G. Horton-Smith

Silicon Calorimeters ........................ . W. Bugg
Data-acquisition network ............. ... .. .. C. Bula
CCD spectrometer ....................... ... E. Prebys
Schedules ......................... A. Melissinos/D. Burke
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