Proposal to Measure the Efficiency of Electron Charge Sign Determination up to 10 GeV in a Magnetized Liquid Argon Detector

(BNL P965, μ LANNDD)

M.V. Diwan, R.C. Fernow, H.G. Kirk, S.A. Kahn, Z. Parsa, B. Viren Brookhaven National Laboratory, Upton, NY 11973 USA

D.B. Cline, K. Lee, B. Lisowski, P.F. Smith Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 USA

R.F. Burkart, W. Burgett, E.J. Feynves Department of Physics, University of Texas at Dallas, Richardson, TX 75083 USA

A. Badertscher, A. Bueno, L. Knecht, G. Natterer, S. Navas, A. Rubbia Institut fr Teilchenphysik, ETHZ, CH-8093 Zürich, Switzerland

J.G. Learned Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 USA

> V. Palladino Universita di Napoli "Federico II", 80138 Napoli, Italy

C. Cerri, F. Sergiampietri INFN-Sezione di Pisa, 56010 S. Piero a Grado - PI, Italy

C. Lu, K.T. McDonald¹ Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 USA

(August 26, 2002)

http://puhep1.princeton.edu/~mcdonald/nufact/p965trans.pdf

 $^{^{1}{\}rm Spokes person}$

Executive Summary

The recent dramatic success of the ICARUS 300-ton liquid-argon time-projectionchamber prototype indicates that it is timely to review the possibilities for largescale application of this technology for accelerator-based neutrino physics, neutrino astrophysics, and proton decay. A full exploration of the MNS neutrino mixing matrix (and extensions if sterile neutrinos exist) should be possible if the large mixing angle MSW solution to the solar neutrino problem, presently favored by the data, is confirmed by future measurements. A large detector for this purpose should be able to distinguish the charge of the lepton into which the neutrino converts, for which the detector should be immersed in a magnetic field.

The most promising option for a large detector that can distinguish the charge of an electron is magnetized liquid argon. However, all studies to date of liquid argon detectors suitable for neutrino physics have been in zero magnetic field. We propose to study two key issues with a liquid argon detector of size $0.7 \times 0.7 \times 3.0 \text{ m}^3$, sufficient to contain an electromagnetic shower, placed in a 120D36 magnet in the AGS A3 beamline:

- 1. Verification that a liquid argon detector can be operated with the electric field perpendicular to the magnetic field (unlike gas-phase time projection chambers that must be operated with \mathbf{E} parallel to \mathbf{B}).
- 2. Verification that the electron charge can be determined up to several GeV by analysis of electromagnetic showers.

We request 15 shifts of slow beam time in the A3 line, with the A target in place to provide 0° secondary beams of 1-10 GeV. There should be an interval of at least one week after the first 10 shifts during which the detector would be reconfigured to have $\mathbf{E} \parallel \mathbf{B}$.

Liquid argon time projection chamber conceived by C. Rubbia (1977).

Largest implementation to date is the ICARUS T600 (600 ton) module, on the surface in Pavia, Italy. http://www.aquila.infn.it/icarus/

Liquid Argon TPC Properties

- 3D tracking + total-absorption calorimetry.
- Pixel size: 3 mm × 3 mm (wire planes) × 0.6 mm (via 400 ns time sampling).
- $\rho = 1.4 \text{ g/cm}^3$, T = 89K at 1 atm., $X_0 = 14 \text{ cm}$, $\lambda_{\text{int}} = 80 \text{ cm}$.
- A minimum ionizing particle yields 50,000 e/cm.
- Drift velocity of 1.5 m/msec at 500 V/cm \Rightarrow 5 m drift in 3 msec.
- Diffusion coef. $D = 6 \text{ cm}^2/\text{s} \Rightarrow \sigma = 1.3 \text{ mm}$ after 3 msec.
- Can have only 0.1 ppb of O_2 for a 5 m drift \Rightarrow Purify with Oxisorb.
- Liquid argon costs \$0.7M/kton and is "stored" not "used".
- Large modules (≥ 100 kton) can be built using technology of liquid methane storage. (Total cost of a 100-kton detector is estimated to be \$200M.)

- Detector is continously "live" and can be "self-triggered" using pipelined, zero-suppression electronics.
- Detector is compatible with operation in a magnetic field.

Extrapolation to Very Large Modules

Preliminary cost	estimate for	a liquid	argon	detector	of	100	kton	total	mass.
------------------	--------------	----------	-------	----------	----	-----	------	-------	-------

Component	Scaling	Cost
Liquid argon (industrial grade)	M	\$70M
Cryo plant, including Oxisorb purifiers	M	\$10M
Surface site preparation	$M^{2/3}$	\$10M
Cryogenic storage tank	$M^{2/3}$	\$20M
Electronics (300k channels)	$M^{2/3}$	\$30M
Computer systems	$M^{2/3}$	\$10M
Subtotal		\$150M
Contingency		\$50M
Total		\$200M

Fiducial mass is for ν_e appearance events \Rightarrow contain EM showers.

Cost scaling = 1.33 [\$80M (M/100 kton) + \$70M (M/100 kton)^{2/3}].

Events from the ICARUS T300 Cosmic Ray Test

The Role of a Magnetic Field

The next generation of neutrino oscillation measurements will emphasize ν_e appearance: $\nu_{\mu} \rightarrow \nu_e \rightarrow eX$.

 \Rightarrow Can measure sin² $2\theta_{13}$, CP violation, as well as improved measurements of sin² $2\theta_{23}$, ΔM_{23}^2 ,

⇒ Good sensitivity for detector located at $\lambda/4$ of the ν_2 - ν_3 oscillation, ⇔ $L(\text{km}) = 450E_{\nu}(\text{GeV}).$

Desire knowledge of lepton sign to **99.9% accuracy** to be consistent with other background effects.

No magnetic field required if use a "conventional" neutrino horn.

If desire $E_{\nu} \lesssim 1$ GeV, may be favorable to use a "solenoid horn" that collects both π^+ and π^- ,

 \Rightarrow Detector must identify charge of final-state lepton up to ≈ 1 GeV.

A Neutrino Factory based on a Muon Storage Ring

Higher (per proton beam power) and better characterized, neutrino fluxes are obtained from μ decay.

6 Classes of Experiments at a Neutrino Factory

$ u_{\mu} \rightarrow \ \nu_{e} \rightarrow e^{-}$	(appearance),	(1)
$ u_{\mu} ightarrow \ u_{\mu} ightarrow \mu^{-}$	(disappearance),	(2)
$ u_{\mu} \rightarrow \ \nu_{\tau} \rightarrow \tau^{-}$	(appearance),	(3)
$\overline{\nu}_e \to \ \overline{\nu}_e \to e^+$	(disappearance),	(4)
$\overline{ u}_e ightarrow \ \overline{ u}_\mu ightarrow \mu^+$	(appearance),	(5)
$\overline{\nu}_e \to \ \overline{\nu}_\tau \to \tau^+$	(appearance).	(6)

[Plus 6 corresponding processes for $\overline{\nu}_{\mu}$ and ν_{e} from μ^{+} decay.]

"Appearance" and "Disappearance" (= nonoscillated) signals have oppositesign final-state leptons, \Rightarrow Detector must identify lepton charge.

Initial Neutrino Factory energy might be 1-3 GeV, with later generation at 10-30 GeV.

Measuring a Muon's Sign in a Magnetized Liquid Argon TPC

In a strong magnetic field, momentum resolution (and sign discrimination) is limited by detector resolution.

But in a weak magnetic field, multiple scattering is the limit.

For example, if have 3-m track length (= 20 X_0 = fiducial length for an electromagnetic shower), then have 3- σ sign discrimination for all muon momenta below 100 GeV/c in a field of 0.1 T.

Above left: Minimum magnetic field vs. track length required to discriminate between positive and negative curvatures at 3- σ . Dashed curves: contribution of the detector resolution at momenta 1, 2, 5, 10, 20 and 50 GeV/c. Dotted curve: contribution of the multiple scattering in the range 1-50 GeV/c. Solid thick curves: combined contribution of detector resolution and multiple scattering in the range 1-50 GeV/c.

Above right: Momentum resolution vs. magnetic field for muons crossing 20 X_0 in liquid Argon. Dashed curves: contribution of the detector resolution at momenta 1, 2, 5, 10, 20 and 50 GeV/c. Circles: contribution of the multiple scattering independent of momentum. Solid thick curve: combined contribution of detector resolution and multiple scattering in the range 1-50 GeV/c.

Measuring an Electron's Sign in a Magnetized Liquid Argon TPC

Because electrons "shower", the useful track length for sign discrimination is limited to $\approx 2X_0 \approx 30$ cm.

IF have 30 cm of useful track length, can get 99.9% accurate sign discrimination up to 5 GeV in a 1-T magnetic field.

But, shower fluctuations can reduce the accuracy of the sign determination.

\Rightarrow Need for experimental study!

[GEANT simulations not yet performed – but will not truly settle the issue.]

The μ LANNDD Proposal

• Place a liquid argon TPC of size $60 \times 60 \times 280 \text{ cm}^3 (\pm 2X_0 \times \pm 2X_0 \times 18X_0)$ in a magnetic field of 0-1 T in a secondary particle beam of 1-10 GeV. $\Rightarrow p/\pi/K/\mu/e$'s.

- Use E ⊥ B since best accuracy in the TPC is in the time sampling along the drift coordinate – and the magnetic field bends the track in the plane ⊥ to B.
- Gas TPC's always use **E** || **B** to avoid Lorentz force effects but these are negligible in liquid argon, and the electrons drift along **E** to good accuracy.
- However, it is desirable to test the TPC with $\mathbf{E} \parallel \mathbf{B}$ as well as $\mathbf{E} \perp \mathbf{B}$.

Sketches of the μ LANNDD Detector HV feedthrough Signal cables Electric field shaping electrodes Cathode frame Wire chamber frame LAr IN $LN_2 IN$ SIGNAL FEEDTHROUGH **HV FEEDTHROUGH** INSULATION VACUUM Ar OUT N2 OUT LN2 JACKET EVACUATED BEAM PIPE INNER VESSEL SUPPORTS **INNER VESSEL** OUTER VESSEL

Services on top of cryostat, \Rightarrow Magnetic field should be horizontal.

Use a 120D36 as the Analysis Magnet in the AGS A3 Line

The 120D35 magnet is now in the (unused) A2 line.

It can be laid on its face in the downstream part of the A3 cave, presently used by E951 (K. McD, spokesperson).

Secondary Beam Requirements

- Drift time across 60 cm is 300 μ s, \Rightarrow Desire particle flux of $\approx 1000/s$.
- Beam spot size not critical; desire FWHM $\approx 0.5''$.
- Beam particle ID not required; done in the liquid argon TPC.
- Desire maximal e/all ratio, \Rightarrow Low-Z target and 0° secondary beam.
- MARS calculation for a 40-cm C target in a 24-GeV proton beam at 0°:

40 cm Carbon Target

- Can get 2-3% electrons even at 10 GeV $\Rightarrow \gtrsim 10 \ e's/s$.
 - \Rightarrow Can collect 10,000 e's in 1/2 hour even at highest energy.
 - \Rightarrow Grid scan of 10 beam energies and 5 magnetic fields in 1 day.
 - \Rightarrow Both beam signs, and both $\mathbf{E} \perp \mathbf{B}$ and $\mathbf{E} \parallel \mathbf{B}$ in 4 days (12 shifts).
- But need ≈ 1 week gap in running to convert from $\mathbf{E} \perp \mathbf{B}$ to $\mathbf{E} \parallel \mathbf{B}$.

Preliminary Cost Estimate

Estimate by F. Sergiampietri (10/01):

A detailed time schedule and cost estimate can be made only after a final definition of the construction drawings and after obtaining cost and time estimates from the producers and suppliers. As an approximate approach, we can foresee the following:

Time schedule

-	Final constructional plans2	months
-	Estimate requests	month
-	Construction	months
-	Assembling	months
-	Home laboratory test	months
-	Setting up in the experimental area1	month
-	Final test0.5	month
-	Data taking1.5	months
-	Data analysis	months

Cost estimates

-	Magnet 100	k€
-	Magnet power supply	k€
-	Cryostat	k€
-	TPC	k€
-	Cryostat details (feedthroughs,)	k€
-	Storage dewars	k€
-	Electronics	k€
-	High voltage power supplies	k€
-	Various accessories and contingency	k€
	Total	k€

Updates:

- Preparation of 120D36 magnet and A3 secondary beam (per C-AD) \$260k
- 15 shifts of parasitic operation of the A3 line\$50k
- Liquid Argon TPC, excluding electronics\$200k
- 1200 channels of electronics (borrowed from ICARUS)(\$100k)

Preliminary Allotment of Responsibilities

- Beamline, 120D36 magnet, operations BNL.
- Detector Construction Pisa, Princeton.
- Detector Electronics ETH, Pisa, Princeton (+ other ICARUS).
- Analysis Software BNL, ETH,
- Simulations BNL, ETH,

P965	C-AD	Impact	Stater	nent	-DR/	AFT-					
									D. Lazarus	8/26/2002	
Propos	sal to M	easure the	Efficier	ncy of Elec	tron Cl	narge Sigr	n Determination up	to 10 GeV in a			
Magne	tized Li	quid Argo	n Detect	tor (µLANN	IDD)						
Spokes	<u>person</u> : I	K. McDonald	J (Princet	.on)							
Instituti	ons: BNL	<u>, UCLA, Te</u>	xas, Zuric	ch, Hawaii, N	apoli, Pi	sa, Princeto	on				
<u>Summa</u>	ry:										
	Detec	ctor test rele	vant to v	and proton	decay ex	periments					
. .	Ļ							40.0.14.1.4			
Primary	Beam:		25 GeV/0	c protons		Secondary	<u>/ Beam</u> :	< 10 GeV electrons	and positrons		
Di							- De sur l'here				
Primary	Beam L	ine:	A			Secondary	/ Beam Line:	A3			
Primary	Beam In	itensity:	<1 x 10 ¹	² /spill		Secondary	<u> / Beam Intensity</u> :	100's per spill			
Special	Beam Re	equirements	: None								
<u>Hours</u> R	Requeste	<u>d:</u>	2 runs se	parated by a	several of	days. Total b	peam time about 1 week	<u> </u>			
_			l								
Reques	ted Sche	dule:	l								
	• FY 20	04 (possibly	/ later) - d	lepends on s	ecuring	funds to co	onstruct the detector				
Conflict	<u>s with ot</u>	her experim	<u>ients</u> (ass	suming resto	oration of	f HEP in FY	2004)				
	• FY200	4 - None									
	1										

Some Is	sues:	P965 Impac	t Stateme	ent (Cont)												
	• C-AD (Cryo Group s	support re	quirements i	not yet def	fined										
C-AD O	perations	<u>s:</u>														
	16 50 4															
	• If E94	9 is supporte	a, P965 c	:ouia run ~ p	arasitically	/ with < 11F	beam to	the A-target								
	If the I	NSF supports	s the RSV	P experimer	nts. could	run ~ paras	itic to ope	ration of K0PI0								
				•												
											Labo	or(mandays)			
C-AD C	osts						Purchas	ses		EDIA		Techs	ĺ	Trades		Total
							(include	es shops)								
	Reconfigure and install 120D36				\$	30,000		60 1		109	79		\$	136,340		
	Other	(contingend	cy,cryo g	roup suppo	rt etc)		\$	6,000		12		21.8		15.8	\$	27,268
	• Total	Direct Cost	1				\$	36,000	\$	31,991	\$	46,397	\$	49,220	\$	163,609
	la d'a						•	40.070	^	07 700	•	40.004	•	47 500	^	00.440
	• indire	ect Cost					\$	12,870	\$	21,132	\$	40,221	\$	17,590	Þ	98,419
	TOTAL	with indired	ct				\$	48,870	\$	59,723	\$	86,618	\$	66,816	\$	262,028
													-			
Other Ex	xperime	nt Costs														
	• µ-LAN	INDD constr	ruction												\$	200,000
HEEP el	ectronic	<u>s:</u> to be dete	ermined													
Impact 0	<u> On C-AD</u>	Resources	Modera	ate												