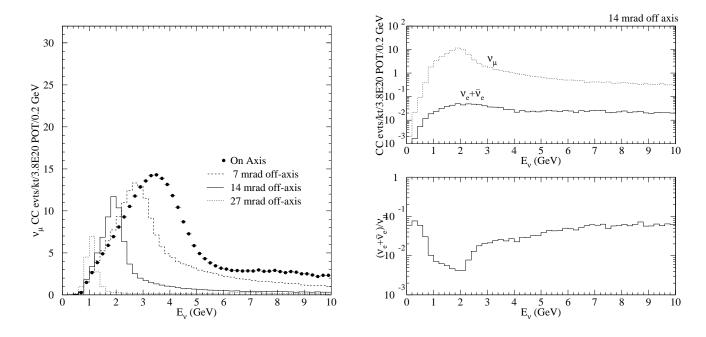
Large and Small (Far and Near) Liquid Argon Detectors for an Off-Axis NuMI Beam

Kirk T. McDonald Princeton U. kirkmcd@princeton.edu NuMI Off-Axis Experiment Detector Workshop SLAC, Jan. 23-24, 2003

http://puhep1.princeton.edu/~mcdonald/nufact/

Post-Nobel Opportunities

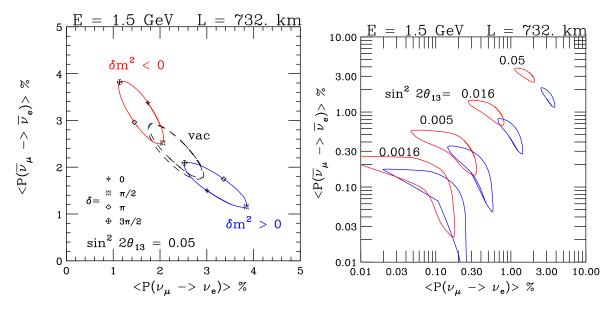
Data from atmospheric and solar neutrino experiments \Rightarrow Rich follow-up physics at accelerators and reactors.


Parameter	Atmos.	Solar	Accel.	Reactor	β Decay	
$\left \Delta M^2_{23} ight $	ID		PM			
$ heta_{23}$	ID		PM			
$\left \Delta M^2_{12} ight $		ID	PM	PM		
$\operatorname{Sign}(\Delta M_{12}^2)$		ID = PM				
$ heta_{12}$		ID	PM	PM		
$ u_{ m sterile}$			ID, PM			
$\operatorname{Sign}(\Delta M_{23}^2)$		$ID = PM \ ID = PM$				
$ heta_{13}$			ID, PM	ID		
Δ_{CP}			ID, PM			
$M_{ u}$					ID	

(ID = Initial Discovery, PM = Precision Measurement)

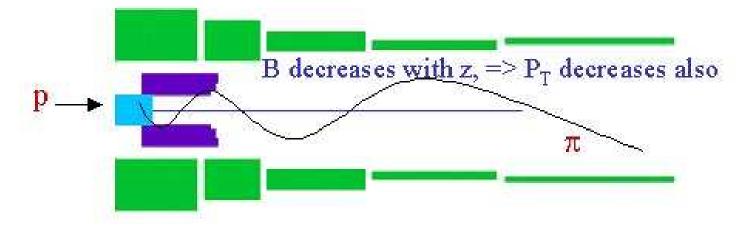
No evidence for proton decay, "theories" apparently not falsifiable, \Rightarrow Linkage with neutrino expts. should be driven by the latter.

Off-Axis NuMI Beam (P929)


• 14-mrad off-axis beam, 735 km, \Rightarrow 2-GeV ν 's @ 1st oscillation max for ν_2 - ν_3 .

- $\approx 50 \ \nu_{\mu}$ CC events/kton in 4-5 year run.
- $\nu_e/\nu_\mu \approx 5 \times 10^{-3}$, \Rightarrow Measurement of $\sin^2 2\theta_{13}$ via $\nu_\mu \rightarrow \nu_e$ limited to ≈ 0.01 by backgrounds.
- At this limit, a signal of 10 ν_μ → ν_e oscillations
 ⇒ 1000 ν_μ CC events,
 ⇒ Need (at least) 20 kton detector.
- \Rightarrow Will eventually want bigger detector ($\gtrsim 100$ kton) and hotter beam (0.4 MW $\rightarrow 2$ MW).

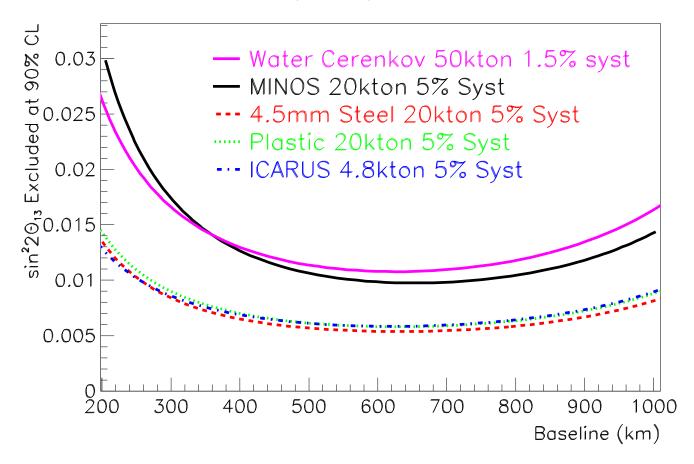
$\delta_{\rm CP}$ and Sign of ΔM_{23}^2


• Can untangle $\delta_{\rm CP}$ from matter effects (sign of ΔM_{23}^2) with NuMI off-axis beam only if sit close to 1st 2-3 osc max (and if $\sin^2 2\theta_{13} \gtrsim 0.03$), \Rightarrow helpful to know ΔM_{23}^2 better.

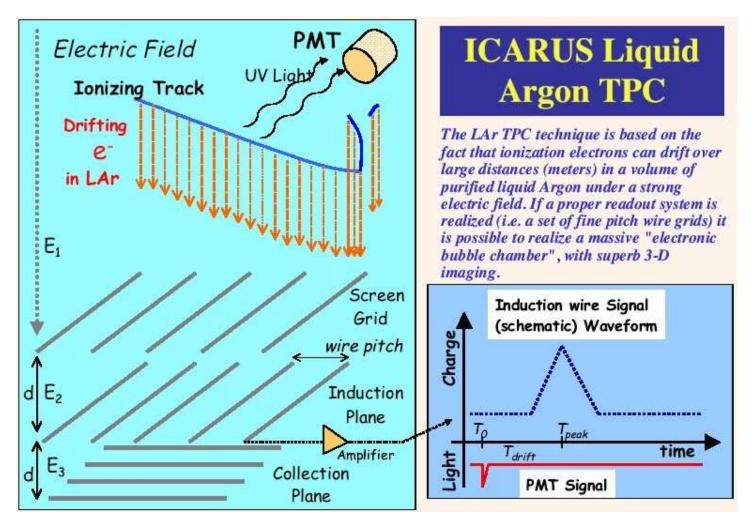
- Some improvement in sensitivity to sign of ΔM_{23}^2 if go to larger distance (and slightly smaller off-axis angle), with little cost in sensitivity to $\sin^2 2\theta_{13}$.
- → Very likely will need 2 generations of detectors (and beams!) to exploit full potential of off-axis superbeams.

The Neutrino Horn Issue for Superbeams

- 2-4 MW proton beams are achieved in BNL, CERN and FNAL scenarios via high rep rates: $\approx 10^6$ /day.
- Classic neutrino horns based on high currents in conductors that intercept much of the secondary pions will have lifetimes of only a few days in this environment.
- Consider instead a solenoid horn with conductors at larger radii than the pions of interest (*c.f.*, Neutrino Factory Design).
- Adiabatic reduction of the solenoid field along the axis,
 - \Rightarrow Adiabatic reduction of pion transverse momentum,
 - \Rightarrow Focusing.



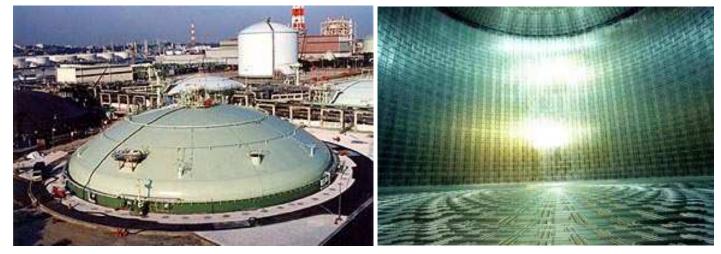
- No sign selection in horn, \Rightarrow Both ν_u and $\bar{\nu}_{\mu}$,
 - \Rightarrow Detector must measure sign of final-state μ or e.


See, http://pubweb.bnl.gov/users/kahn/www/talks/Homestake.pdf

Liquid Argon the Best Detector to Study $\sin^2 2\theta_{13}$ in the NUMI Beamline

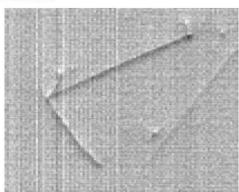
• ≈ 10 times better per kton than water Čerenkov for $\nu_{\mu} \rightarrow \nu_{e}$ appearance at 1-2 GeV (Harris).

- Density = 1.4; $X_0 = 14$ cm; can drift electrons 3-5 m.
- 100% sampling tracking and calorimetry.
- Construction is simplest of large neutrino detector options.
- Best rejection of neutral current backgrounds, including soft π^{0} 's.

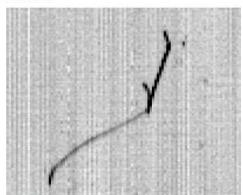

Liquid argon time projection chamber conceived by C. Rubbia (1977).

Largest implementation to date is the ICARUS T600 (600 ton) module, on the surface in Pavia, Italy. http://www.aquila.infn.it/icarus/

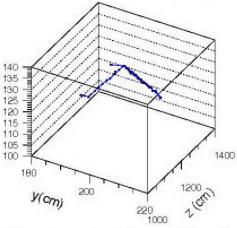
Liquid Argon TPC Properties


- 3D tracking + total-absorption calorimetry.
- Pixel size: 3 mm × 3 mm (wire planes) × 0.6 mm (via 400 ns time sampling).
- $\rho = 1.4 \text{ g/cm}^3$, T = 89K at 1 atm., $X_0 = 14 \text{ cm}$, $\lambda_{\text{int}} = 80 \text{ cm}$.
- A minimum ionizing particle yields 50,000 e/cm.
- Drift velocity of 1.5 m/msec at 500 V/cm \Rightarrow 5 m drift in 3 msec.
- Diffusion coef. $D = 6 \text{ cm}^2/\text{s} \Rightarrow \sigma = 1.3 \text{ mm}$ after 3 msec.
- Can have only 0.1 ppb of O_2 for a 5 m drift, \Rightarrow Purify with Oxisorb.
- Liquid argon costs \$0.7M/kton and is "stored" not "used".
- Large modules (≥ 100 kton) can be built using technology of liquid methane storage. (Total cost of a 100-kton detector is estimated to be \$200M.)

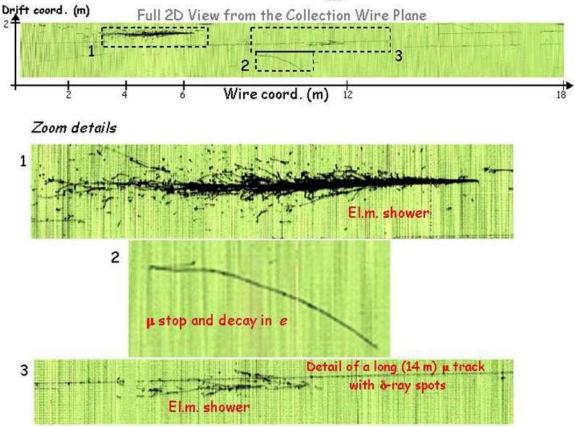
- Detector is continously "live" and can be "self-triggered" using pipelined, zero-suppression electronics.
- Operates at the Earth's surface with near zero overlap of cosmic ray events.
- Detector is compatible with operation in a magnetic field.

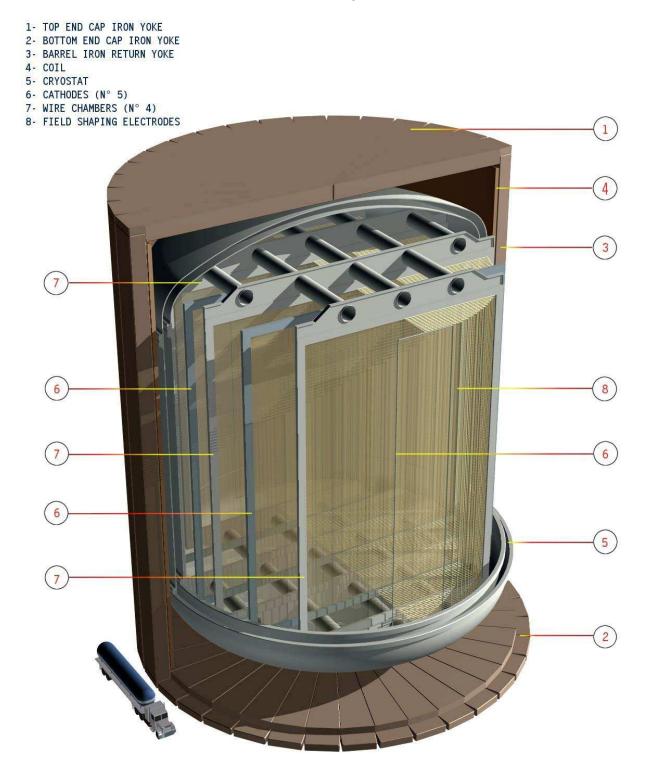

Events from the ICARUS T300 Cosmic Ray Test

Induction I

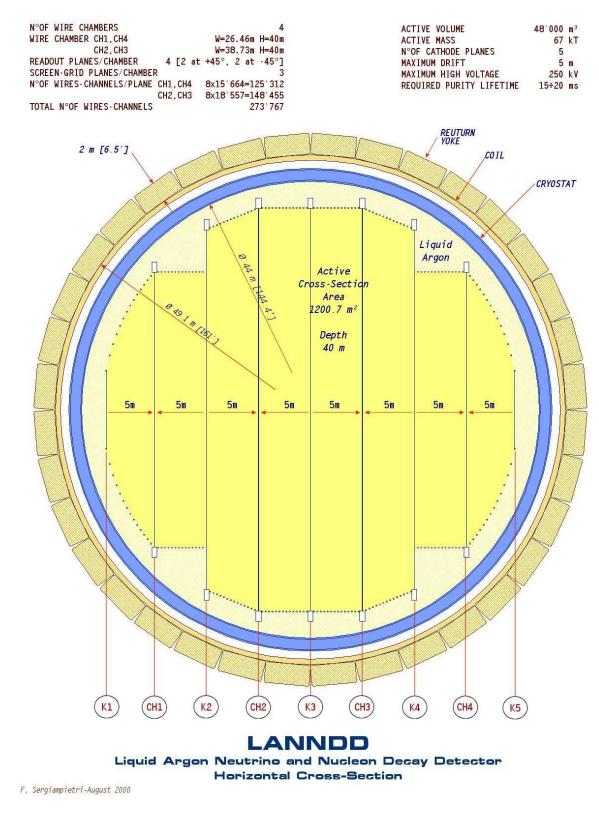


Induction II


Collection


Above: 3 views of a low-energy hadronic interaction. Right: Computer reconstruction.

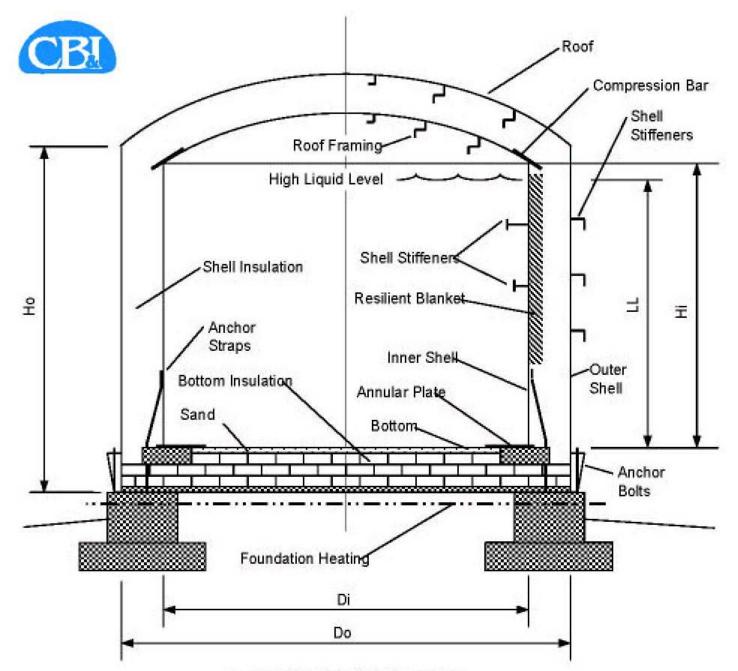
Below: Cosmic ray shower that includes a muon with a δ ray, a stopping muon, and an electromagnetic shower.


LANNDD – 100 kton Liquid Argon Neutrino and Nucleon Decay Detector

LANNDD Liquid Argon Neutrino and Nucleon Decay Detector

F. Sergiampietri-August 2000

LANNDD Top View



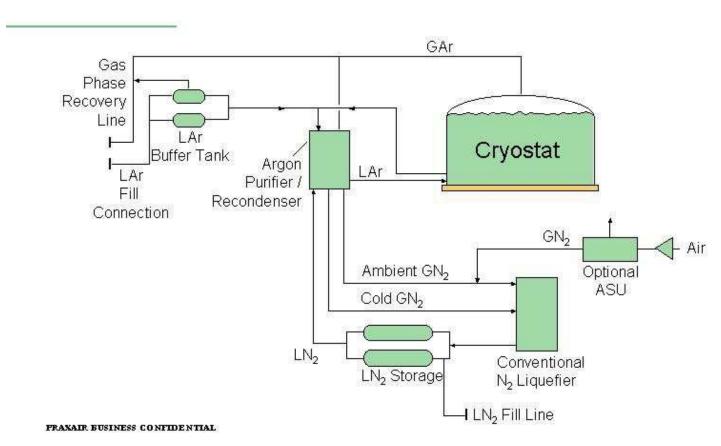
Max drift length of 5 m (limited by O_2 purity), \Rightarrow Several drift cells.

Is a 100-kton Liquid Argon Detector Feasible?

- Use mature, low-cost technology of liquid methane storage tanks (up to 300 kton based on existing structures).
 Preliminary budget estimate from industry of < \$20M for a 100-kton tank, IF built on the SURFACE.
- 100 kton of liquid argon = 10% of USA annual production.
 ⇒ Deliver one trailer-load every 2 hours from Chicago,....
 Only 5 ppm O₂ grade available in large quantities,
 ⇒ On-site liquid-phase purification via Oxisorb (MG).
 Raw material, delivery + purification ⇒ \$0.8M/kton.
- ICARUS electronics from CAEN @ \$100/channel.
 3 mm wire spacing ⇒ 300k ch ⇒ \$30M.
 9 mm wire spacing ⇒ 100k ch ⇒ \$10M.
 High capacity of long wires ⇒ signal may be too weak to use 3 mm spacing.
- With neutrino beam, record every pulse (10^{-3} duty factor). Cosmic rays occupy $\approx 10^{-3}$ of active volume,
 - $\Rightarrow \approx 10 \text{ MB data per trigger.}$
 - \Rightarrow Modest (< \$10M) DAQ/computer system.

200-kton Cryogenic Tanks Used for LNG Storage

Double Wall & Double Roof Tank


Feet		
165		
117.9803		
117.7303		
173		
118.0443		

Chicago Bridge & Iron: can build 100-kton LAr tank for < \$20M.

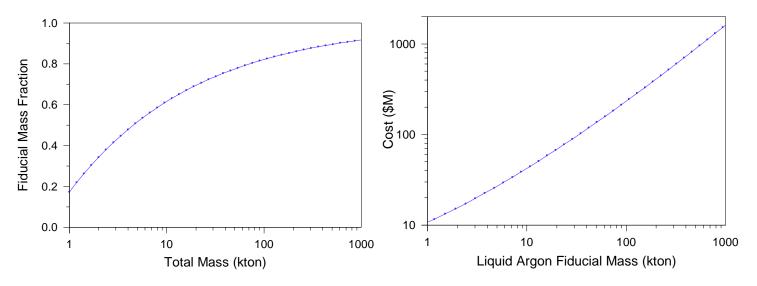
Strong Interest by Praxair

Praxair is the leading USA vendor of liquid argon.

The Praxair R&D Lab in Tonawanda, NY is same Union Carbide lab that provided the expertise to build the Oak Ridge gaseous diffusion plant in the 1940's.

LANNDD Cryogenic System

aml:9/2/02-DPB 1


PRAXAIR

Extrapolation to Very Large Modules

Preliminary cost estimate for a liquid argon detector of 100 kton **total** mass.

Component	Scaling	Cost
Liquid argon (industrial grade)	M	\$70M
Cryo plant, including Oxisorb purifiers	M	\$10M
Surface site preparation	$M^{2/3}$	\$10M
Cryogenic storage tank	$M^{2/3}$	\$20M
Electronics (300k channels)	$M^{2/3}$	\$30M
Computer systems	$M^{2/3}$	\$10M
Subtotal		\$150M
Contingency		\$50M
Total		\$200M

Fiducial mass is for ν_e appearance events \Rightarrow contain EM showers.

Cost scaling = 1.33 [\$80M (M/100 kton) + \$70M (M/100 kton)^{2/3}].

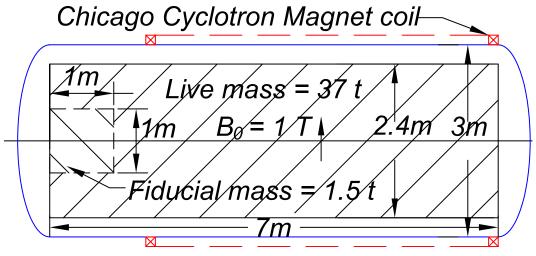
Preliminary Cost Comparison

Scaling the liquid argon detector cost estimate, \Rightarrow \$53M for 20 kton total mass.


Cost estimates for a 20-kton "particle-board" detector:

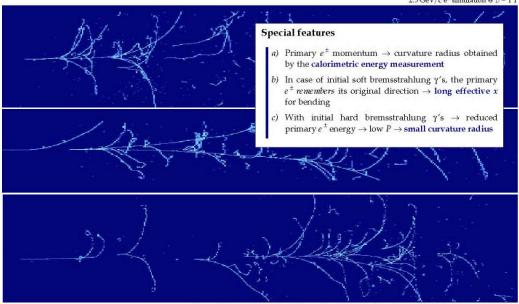
- 20 m \times 20 m \times 160 layers of 30 cm each (50 m deep).
- $64,000 \text{ m}^2$ of readout; 512,000 ch on 2.5 cm pitch.
- Readout costs based on a recent BaBar evaluation.

Component	RPC	Iarocci	Scintillator
Particle board	\$5M	\$5M	\$5M
Mech. Assem.	\$5M	\$5M	\$5M
Detector $\rm Cost/m^2$	\$350	\$500	\$300
Detector Cost	\$22M	\$32M	\$19M
Cost/Readout Ch	\$25	\$25	\$90
Readout Cost	\$13M	\$13M	\$46M
Subtotal	\$45M	\$55M	\$75M
Total w/25% Contingency	\$56 M	\$69 M	\$93 M


Next Steps

• 40-ton near detector (1.5-ton fid. mass) in off-axis NUMI beam.

 \bullet Add Chicago Cyclotron Magnet coils to give $B\,\approx\,1$ T over

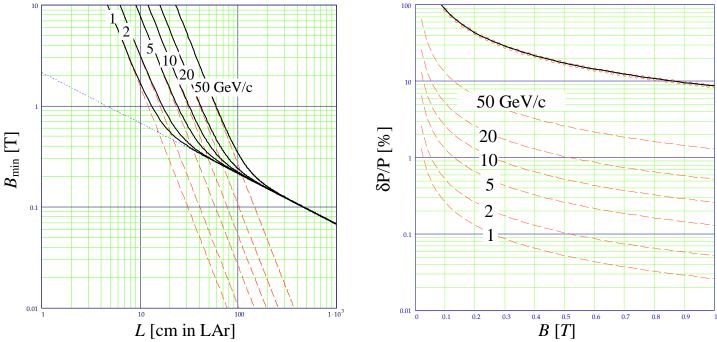

downstream (or upstream) 2/3 of detector.

 $\Rightarrow 10^5 \text{ CC } \nu_{\mu} \text{ ineractions/year.}$

R&D (see NuMI-PUB-GEN-0880)

- Liquid-phase purification of industrial grade argon via Oxisorb or equivalent (Praxair).
- Mechanics and electronics of wires up to 60-m long.
- Cryogenic feedthroughs, possibly including buffer volume at 150K for low-noise FET's.
- Verification of operation of a liquid argon TPC at 10 atmospheres (as at bottom of a 100-kton tank).
- Study of liquid argon TPC in a magnetic field (BNL P-965).

A. Bueno, M. Campanelli, A. Rubbia, IX International Workshop on "Neutrino Telescopes", VENICE, 2001

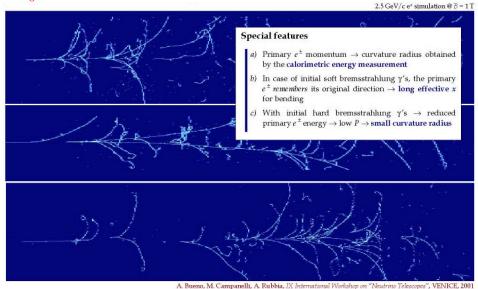

Should identify sign of e^{\pm} up to ≈ 3 Gev in a 0.5-T field.

Appendix: Measuring a Muon's Sign in a Magnetized Liquid Argon TPC

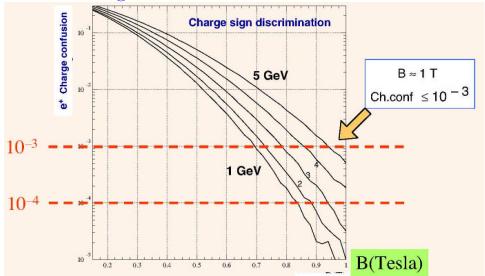
In a strong magnetic field, momentum resolution (and sign discrimination) is limited by detector resolution.

But in a weak magnetic field, multiple scattering is the limit.

For example, if have 3-m track length (= 20 X_0 = fiducial length for an electromagnetic shower), then have 3- σ sign discrimination for all muon momenta below 100 GeV/c in a field of 0.1 T.


Above left: Minimum magnetic field vs. track length required to discriminate between positive and negative curvatures at 3- σ . Dashed curves: contribution of the detector resolution at momenta 1, 2, 5, 10, 20 and 50 GeV/c. Dotted curve: contribution of the multiple scattering in the range 1-50 GeV/c. Solid thick curves: combined contribution of detector resolution and multiple scattering in the range 1-50 GeV/c.

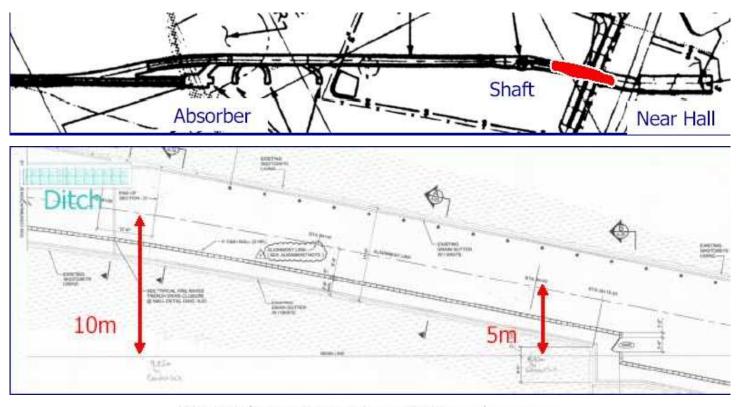
Above right: Momentum resolution vs. magnetic field for muons crossing 20 X_0 in liquid Argon. Dashed curves: contribution of the detector resolution at momenta 1, 2, 5, 10, 20 and 50 GeV/c. Circles: contribution of the multiple scattering independent of momentum. Solid thick curve: combined contribution of detector resolution and multiple scattering in the range 1-50 GeV/c.

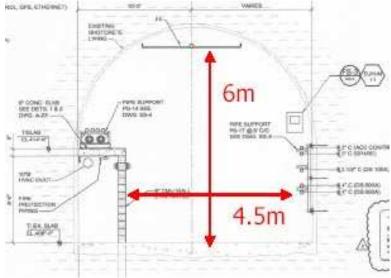

Appendix: Measuring an Electron's Sign in a Magnetized

Liquid Argon TPC

Because electrons "shower", the useful track length for sign discrimination is limited to $\approx 2X_0 \approx 30$ cm.

IF have 30 cm of useful track length, can get 99.9% accurate sign discrimination up to 5 GeV in a 1-T magnetic field.




But, shower fluctuations can reduce the accuracy of the sign determination.

\Rightarrow Need for experimental study!

[GEANT simulations not yet performed – but will not truly settle the issue.]

Appendix: Off-Axis Detector Sites in the NuMI Access Shaft [Steve Manly: http://nuint.ps.uci.edu/slides/Manly.pdf]

