High-PowerTargets for Neutrino Beams and Muon Colliders

K.T. McDonald *Princeton U.* EUROv Meeting CERN, March 26, 2009

Targets for 2-4 MW Proton Beams

- 5-50 GeV beam energy appropriate for Superbeams, Neutrino Factories and Muon Colliders. $0.8-2.5 \times 10^{15} pps; 0.8-2.5 \times 10^{22} protons per year of 10^7 s.$
- Rep rate 15-50 Hz at Neutrino Factory/Muon Collider, as low as \approx 2 Hz for Superbeam.
 - \Rightarrow Protons per pulse from 1.6 \times 10¹³ to 1.25 \times 10¹⁵.
 - \Rightarrow Energy per pulse from 80 kJ to 2 MJ.
- Small beam size preferred:
 - $\approx~0.1~cm^2$ for Neutrino Factory/Muon Collider, $\approx~1~cm^2$ for Superbeam.
- Pulse width $\approx 1 \ \mu s$ OK for Superbeam, but $\overline{3}$ ns desired for Neutrino Factory/Muon Collider.
- \Rightarrow Severe materials issues for target AND beam dump.
 - Radiation Damage.
 - · Melting.
 - Cracking (due to single-pulse "thermal shock").
- MW energy dissipation requires liquid coolant somewhere in system!

 \Rightarrow No such thing as "solid-target-only" at this power level.

Radiation Damage

- The lifetime dose against radiation damage (embrittlement, cracking,) by protons for most solids is about 10²²/cm².
- ⇒ Target lifetime of about 5-14 days at a 4-MW Neutrino Factory (and 9-28 days at a 2-MW Superbeam).
- Mitigate by frequent target changes, moving target, liquid target, ... [Mitigated in some materials by annealing/operation at elevated temperature.]

K. McDonald

Remember the Beam Dump

- Target of 2 interaction lengths \Rightarrow 1/7 of beam is passed on to the beam dump.
 - \Rightarrow Energy deposited in dump by primary protons is same as in target.
- Long distance from target to dump at a Superbeam,
 - \Rightarrow Beam is much less focused at the dump than at the target,
 - \Rightarrow Radiation damage to the dump not a critical issue (Superbeam).
- Short distance from target to dump at a Neutrino Factory/Muon Collider,
 - \Rightarrow Beam still tightly focused at the dump,
 - \Rightarrow Frequent changes of the beam dump, or a moving dump, or a liquid dump.
- A flowing liquid beam dump is the most plausible option for a Neutrino Factory, independent of the choice of target. (This is so even for a 1-MW Neutrino Factory.)

The proton beam should be tilted with respect to the axis of the capture system at a Neutrino Factory, so that the beam dump does not absorb the captured π 's and μ 's.

Target Options

- Static Solid Targets
 - Graphite (or carbon composite) cooled by water/gas/radiation [CNGS, NuMI, T2K]
 - Tungsten or Tantalum (discs/rods/beads) cooled by water/gas [PSI, LANL]
- Moving Solid Targets
 - Rotating wheels/cylinders cooled (or heated!) off to side [SLD, FNAL, Bennett, SNS]
 - Continuous or discrete belts/chains [King]
 - Flowing powder [Densham]
- Flowing liquid in a vessel with beam windows [SNS, ESS]
- Free liquid jet [Neutrino Factory Study 2]

Static Solid Targets

Pros:

- Tried and true - for low power beams.

- Will likely survive "thermal shock" of long beam pulses at 2 MW (Superbeam).

Cons:

- Radiation damage will lead to reduced particle production/mechanical failure on the scale of a few weeks at 2 MW.

- If liquid cooled, leakage of radioactive coolant anywhere in the system is potentially more troublesome than breakup of a radioactive solid.

 \Rightarrow Must consider a "moving target" later if not sooner.

R&D: Test targets to failure in high-power beams to determine actual operational limits.

Pros:

- Can avoid radiation damage limit of static solid targets.
- Will likely survive "thermal shock" of long beam pulses at 2 MW (Superbeam).

Cons:

- Target geometry not very compatible with neutrino "horns" except when target is upstream of horn (high energy v's: CNGS, NuMI).

- If liquid cooled, leakage of radioactive coolant anywhere in the system is potentially more troublesome than breakup of a radioactive solid.

R&D:

- Engineering to clarify compatibility with a target station for Superbeams.
- Lab studies of erosion of nozzle by powders.

Personal view: this option is incompatible with Neutrino Factories.

Flowing Liquids in Vessels

Pros:

- The liquid flows through well-defined pipes.
- Radiation damage to the liquid is not an issue.

Cons:

- The vessel must include static solid beam windows, whose lifetime will be very short in the small proton spot sizes needed at Superbeams and Neutrino Factories.

- Cavitation in the liquid next to the beam windows is extremely destructive.

- Leakage of radioactive liquid anywhere in the system is potentially more troublesome than breakup of a radioactive solid.

R&D: This option is not very plausible for Superbeams and Neutrino Factories, and no R&D is advocated.

Pros:

- No static solid window in the intense proton beam.
- Radiation damage to the liquid is not an issue.

Cons:

- Never used before as a production target.
- Leakage of radioactive liquid anywhere in the system is potentially more troublesome than breakup of a radioactive solid.
- R&D: Proof of principle of a free liquid jet target has been established by the CERN MERIT Experiment. R&D would be useful to improve the jet quality, and to advance our understanding of systems design issues.
- Personal view: This option deserves its status as the baseline for Neutrino Factories and Muon Colliders. For Superbeams that will be limited to less than 2 MW, static solid targets continue to be appealing.

T2K Target (C. Densham, RAL)

Graphite rod, 900 mm (2 int.lengths) long, 26 mm
(c.2σ) diameter.

• 20 kW of 750 kW Beam Power dissipated in target as heat.

• Helium cooled (i) to avoid shock waves from liquid coolant, s e.g., water and (ii) to allow higher operating temperature.

• Target rod completely encased in titanium to prevent oxidation of the graphite.

 \cdot Pressure drop ~ 0.8 bar available for flow rate of 32 g/s.

• Target to be uniformly cooled at ~400°C to reduce radiation damage.

• Can remotely change the target in the first horn.

26 Mar 2009

• Start-up date: 1st April 2009.

K. McDonald

Extrapolating NuMI 0.3 MW Targeting to a 2 MW beam (J. Hylen, FNAL)

EUROv Meeting

- Nova target for 0.7 MW.
- Upstream of horn.
- Graphite fins, 120 cm total.
- Water-cooled Al can.
- Proton beam $\sigma = 1.3$ mm.
 - DUSEL target for 2 MW.

K. McDonald

- Embedded in horn.
- Graphite fins in water-cooled can should be viable to 2 MW.

Target for the CERN SPL at 2-4 GeV and 4 MW (A. Longhin, Saclay)

- \cdot 50-Hz beam \Rightarrow substantial electromechanical challenges for pulsed horn.
- Target inside horn.
- Hg jet target often considered, but a graphite (or flowing powder) target could work.

Material Irradiation Studies (Simos, BNL)

BNL BLP Studies: Tantalum (0.25 dpa):

Water-cooled/Edge-cooled TRIUMF target (10²² p/cm²):

BNL BLP Studies: Carbon (0.25 dpa):

K. McDonald

EUROv Meeting

SNS (ORNL) 3-MW Target Option

30 rpm with 20-Hz pulse frequency and 1- μ s pulse length, 7-cm diameter. Water cooled by 10-gpm total flow. Design life: 3 years.

This geometry is not suitable for ν Superbeam, ν Factory or Muon Collider.

Fluidized Powder Targets (O, Caretta, RAL)

- Powders propelled (fluidized) by a carrier gas flow somewhat like liquids.
- Powder grains largely unaffected by magnetic fields (eddy currents).
- Flowing powder density ~ 30% of solid. [Low density of high-Z target preferable for pion production (R. Bennett).]
- •Flowing powder has surprising similarities to flowing liquids: turbulence, "surface"

- Mechanics of a quasicontinuous flow system are intricate, but good industry support.
- Erosion a critical issue: ceramic inserts?

K. McDonald

Carrier = helium at 1.5 bar

Carrier = helium at 2.5 bar

Carrier = helium at 3.5 bar

Target and Capture Topologies: Solenoid

Desire $\approx 10^{14}~\mu/s$ from $\approx 10^{15}~p/s$ (\approx 4 MW proton beam).

Highest rate $\mu^{\scriptscriptstyle +}$ beam to date: PSI $\mu E4~$ with $\approx 10^9~\mu/s$ from $\approx 10^{16}~p/s$ at 600 MeV.

 \Rightarrow Some R&D needed!

- R. Palmer (BNL, 1994) proposed a solenoidal capture system.
- Low-energy π 's collected from side of long, thin cylindrical target.
- Collects both signs of π 's and μ 's,
- \Rightarrow Shorter data runs (with magnetic detector).
- Solenoid coils can be some distance from proton beam.
- $\Rightarrow \geq$ 4-year life against radiation damage at 4 MW.

Liquid mercury jet target replaced every pulse.

- Proton beam readily tilted with respect to magnetic axis.
- \Rightarrow Beam dump (mercury pool) out of the way of secondary π 's and μ 's.

Neutrino Factory Study 2 Target Concept

CERN MERIT Experiment (Nov 2007)

Proof-of-principle demonstration of a mercury jet target in a strong magnetic field, with proton bunches of intensity equivalent to a 4 MW beam.

Pion production remains nominal for several hundred μ s after first proton bunch of a train. Jet disruption suppressed (but not eliminated) by high magnetic field.

Region of disruption of the mercury jet is shorter than its overlap with the proton beam. Filament velocity < 100 m/s.

R&D Issues for Hg Jet Target Option

- Continue and extend simulations of mercury flow in and out of the nozzle.
 - Can we understand/mitigate the observed transverse growth of the jet out of the nozzle, which was largely independent of magnetic field.
- \cdot Examine the MERIT primary containment vessel for pitting by mercury droplets ejected from the jet by the proton beam.
- \cdot Extend the engineering study of a mercury loop + 20-T capture magnet, begun in ν Factory Study 2, in the context of the International Design Study.
 - Splash mitigation in the mercury beam dump,
 - Possible drain of mercury out upstream end of magnets.
 - Downstream beam window
 - Water-cooled tungsten-carbide shield of superconducting magnets.
 - High-TC fabrication of the superconducting magnets.
- Hardware prototype of a continuous mercury jet with improved nozzle.

Solenoid Capture System for a Superbeam

- Pions produced on axis inside the (uniform) solenoid have zero canonical angular momentum, $L_z = r(P_{\varphi} + eA_{\varphi} / c) = 0$, $\Rightarrow P_{\varphi} = 0$ on exiting the solenoid.
- If the pion has made exactly 1/2 turn on its helix when it reaches the end of the solenoid, then its initial P_r has been rotated into a pure P_{φ} , $\Rightarrow P_r = 0$ on exiting the solenoid.

 \Rightarrow Point-to-parallel focusing for

 $P_{\pi} = eBd / (2n + 1) \pi c.$ $\Rightarrow \text{Narrowband (less background)}$ neutrino beams of energies

$$E_{\nu} \approx \frac{P_{\pi}}{2} = \frac{eBd}{(2n+1)2\pi c}.$$

 \Rightarrow Can study several neutrino oscillation peaks at once,

$$\frac{1.27M_{23}^2[\text{eV}^2] L[\text{km}]}{E_{\nu}[\text{GeV}]} = \frac{(2n+1)\pi}{2}.$$

(Marciano, hep-ph/0108181)

(KTM, physics/0312022)

Study both v and \overline{v} at the same time.

- \Rightarrow Detector must tell v from \overline{v} .
- \Rightarrow MIND, TASD magnetized iron detectors
- $\Rightarrow \text{ Liquid argon TPC that can identify slow protons:} \\ v n \rightarrow p e^{-X} \quad vs. \quad \overline{v} p \rightarrow n e^{+X}$

Simulation of Solenoid Horn

(H. Kirk and R. Palmer, BNL, NuFACT06)

