Targets for Multimegawatt Proton Beams

Sketches of a 4-MW Target Station

Fermilab, August 8, 2003 http://puhep1.princeton.edu/mumu/target/

Overview

- Why targetry ? = R&D of high power targets for accelerators.
- Targets in a solenoid horn.
- Targets in a conventional (toroidal) neutrino horn.
- How much power can a pulsed target withstand?
- Solid target studies, including band targets and granular targets.
- Liquid target studies.
- Continuing R&D (including targets for linear colliders).

Why Targetry?

- Targetry = the task of producing and capturing π 's and μ 's from proton interactions with a nuclear target.
- At a lepton collider the key parameter is luminosity:

$$
\mathcal{L} = \frac{N_1 N_2 f}{A} \,\mathrm{s}^{-1} \mathrm{cm}^{-2},
$$

 \Rightarrow Gain as square of source strength (targetry), but small beam area (cooling) is also critical.

- At a neutrino factory the key parameter is neutrino flux, \Rightarrow Source strength (targetry) is of pre-eminent concern. [Beam cooling important mainly to be sure the beam fits in the pipe.]
- The exciting results from atmospheric and reactor neutrino programs (Super-K, SNO, KamLAND) reinforce the opportunity for neutrino physics with intense accelerator neutrino beams, where **targetry is a major challenge**.

A "Conventional" Neutrino Horn

If desire secondary pions with $E_{\pi} \le 0.5$ GeV (neutrino factories), a high-Z target is favored, but for $E_{\pi} \gtrsim 1$ Gev ("conventional" neutrino beams), low Z is preferred.

Aggressive design: carbon-carbon target with He gas cooling:

intensity.

Carbon-Carbon **Target Rod**

helium IN

A Solenoidal Targetry System for a Superbeam

- A precursor to a Neutrino Factory is a Neutrino Superbeam based on decay of pions from a multimegawatt proton target station.
- 4 MW proton beams are achieved in both the BNL and FNAL (and CERN) scenarios via high rep rates: $\approx 10^6/\text{day}$.
- Classic neutrino horns based on high currents in conductors that intercept much of the secondary pions will have lifetimes of only a few days in this environment.
- Consider instead a solenoid "horn" with conductors at larger radii than the pions of interest – similar to the Neutrino Factory capture solenoid.
- Pions produced on axis inside the solenoid have zero (canonical) angular mometum, $L_z = r(P_\phi + eA_\phi/c) = 0$, $\Rightarrow P_{\phi} = 0$ on exiting the solenoid.
- If the pion has made exactly $1/2$ turn on its helix when it reaches the end of the solenoid, then its initial P_r has been rotated into a pure $P_{\phi} \Rightarrow P_{\perp} = 0$ on exiting the solenoid,
	- \Rightarrow Point-to-parallel focusing.

Narrowband Beam via Solenoid Focusing

- The point-to-parallel focusing occurs for $P_{\pi} = eB d/(2n + 1)\pi c$.
- $\bullet \Rightarrow$ Narrowbeam neutrino beam with peaks at

$$
E_{\nu} \approx \frac{eBd}{(2n+1)2\pi c}.
$$

- $\bullet \Rightarrow$ Can study several neutrino oscillation peaks at once, at $1.27 M_{23}^2 [\text{eV}^2]$ $L [\text{km}]$ $\frac{E_{23}[\text{C}\text{V}]/\text{E}[\text{Km}]}{E_{\nu}[\text{GeV}]}$ = $(2n + 1)\pi$ 2 .
- Get both ν and $\bar{\nu}$ at the same time,
	- \Rightarrow Must use detector that can identify sign of μ and e ,
	- ⇒ Magnetized liquid argon TPC.

Thermal Shock

When beam pulse length t is less than target radius r divided by speed of sound $v_{\rm sound}$, beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if $U =$ beam energy deposition in, say, Joules/g, then the instantaneous temperature rise ΔT is given by

$$
\Delta T = \frac{U}{C},
$$

where $C =$ heat capacity in Joules/g/K.

The temperature rise leads to a strain $\Delta r/r$ given by

$$
\frac{\Delta r}{r} = \alpha \Delta T = \frac{\alpha U}{C},
$$

where $\alpha =$ thermal expansion coefficient.

The strain leads to a stress $P = \text{force/area}$ given by

$$
P = E\frac{\Delta r}{r} = \frac{E\alpha U}{C},
$$

where E is the modulus of elasticity.

In many metals, the tensile strength obeys $P \approx 0.002E$, $\alpha \approx 10^{-5}$, and $C \approx 0.3 \text{ J/g/K}$, in which case

$$
U_{\text{max}} \approx \frac{PC}{E\alpha} \approx \frac{0.002 \cdot 0.3}{10^{-5}} \approx 60 \text{ J / g.}
$$

How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material? What is the maximum beam power this material can withstand without cracking, for a 10-GeV beam at 10 Hz with area 0.1 cm^2 .

Ans. If we ignore "showers" in the material, we still have dE/dx ionization loss, of about 1.5 MeV/ g/cm^2 . Now, 1 MeV = 1.6×10^{-13} J, so 60 J/ g requires a proton beam intensity of $60/(1.6 \times 10^{-13}) = 10^{15}/\text{cm}^2$. Then, $P_{\text{max}} \approx 10 \text{ Hz} \cdot 10^{10} \text{ eV} \cdot 1.6 \times 10^{-19} \text{ J/eV} \cdot 10^{15} / \text{cm}^2 \cdot 0.1 \text{ cm}^2$ $\approx 1.6 \times 10^6 \text{ J/s} = 1.6 \text{ MW}.$

Solid targets are viable up to about 1.5 MW beam power!

Window Tests (5e12 ppp, 24 GeV, 100 ns)

Aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented with fiberoptic strain sensors.

A Carbon Target is Feasible at 1-MW Beam Power

A carbon-carbon composite with near-zero thermal expansion is largely immune to beam-induced pressure waves.

0 20 40 60 80 100 **Power Deposited in Target (kW)**

A carbon target in vacuum sublimates away in 1 day at 4 MW.

Sublimation of carbon is negligible in a helium atmosphere. Tests underway at ORNL to confirm this.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

1E-10

Solid Target Designs

KIRK T. MCDONALD FERMILAB LONG RANGE PLANNING COMMITTEE, AUGUST 8, 2003 11

Effects of Radiation on SuperInvar *Activation Measurements* 30 Non-irradiated sample B6

A Granular Target

Beam entrance window an issue.

P. Sievers, http://molat.home.cern.ch/molat/neutrino/nf127.pdf

BELLOWS BELLOWS MAGN. HORN O VACUUM BEAM PIVOT PIVOT AIR COOLING ELECTR. He **GRANULAR INSULATORS WINDOWS** COOLING **TARGET PIPES**

Inside a neutrino horn:

A Liquid Metal Jet May Be the Best Target for Beam Power above 1.5 MW

Mercury jet target inside a magnetic bottle: 20-T around target, dropping to 1.25 T in the pion decay channel.

Mercury jet tilted by 100 mrad, proton beam by 67 mrad, to increase yield of soft pions.

Mercury Jet Concept for the CERN 2-GeV Neutrino Horn

Recent schematic of the CERN Target

Viability of Targetry and Capture For a Single Pulse

• Beam energy deposition may disperse the jet.

• Eddy currents may distort the jet as it traverses the magnet.

Beam-Induced Cavitation in Liquids Can Break Pipes

Snapping shrimp stun prey via

ISOLDE:

BINP:

SNS:

The Shape of a Liquid Metal Jet under a Non-uniform Magnetic Field

Fig. 10 Cross-sectional shape of the jet obtained by spot a electrode probe

S. Oshima et al., JSME Int. J. 30, 437 (1987).

KIRK T. MCDONALD FERMILAB LONG RANGE PLANNING COMMITTEE, AUGUST 8, 2003 18

Studies of Proton Beam + Mercury Jet (BNL)

1-cm-diameter Hg jet in 2e12 protons at $t = 0, 0.75, 2, 7, 18$ ms.

$$
\text{Model:} \qquad v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C} v_{\text{sound}} \approx 50 \text{ m/s}
$$
\n
$$
\text{for } U \approx 100 \text{ J/g.}
$$

Data: $v_{\text{dispersal}} \approx 10 \text{ m/s}$ for $U \approx 25 \text{ J/g}.$

 $v_{\text{dispersal}}$ appears to scale with proton intensity.

The dispersal is not destructive.

Filaments appear only $\approx 40 \mu s$ after beam, \Rightarrow after several bounces of waves, or v_{sound} very low.

Tests of a Mercury Jet in a 20-T Magnetic Field (CERN/Grenoble, A. Fabich, Ph.D. Thesis)

Eddy currents may distort the jet as it traverses the magnet.

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, $v \approx 12$ $m/s, B = 0, 10, 20$ T. \Rightarrow Damping of surface tension waves (Rayleigh instability). Will the beam-induced dispersal be damped also?

Issues for Further Targetry R&D

- Continue numerical simulations of MHD + beam-induced effects.
- Continue tests of mercury jet entering magnet.
- For solid targets, study radiation damage and issues of heat removal from solid metal targets (carbon/carbon, Toyota Ti alloy, bands, chains, etc.).
- Confirm manageable mercury-jet dispersal in beams up to 10^{14} protons/pulse for which single-pulse vaporization may also occur. Test Pb-Bi alloy jet.
- Study issues when combine intense proton beam with mercury jet inside a high-field magnet.
	- 1. MHD effects in a prototype target configuration.
	- 2. Magnetic damping of mercury-jet dispersal.
	- 3. Beam-induced damage to jet nozzle in the magnetic field.
- \Rightarrow We propose to construct a 15-T pulsed magnet, that can be staged as a 5-T and 10-T magnet.

A 15-T LN2-Cooled Pulsed Solenoid

- Simple solenoid geometry with rectangular coil cross section and smooth bore (of 20 cm diameter)
- Cryogenic system reduces coil resistance to give high field at relatively low current.
	- Circulating coolant is gaseous He to minimize activation, and to avoid need to purge coolant before pulsing magnet.
	- $-$ Cooling via N_2 boiloff.
- Most cost effective to build the 4.5-MW supply out of "car" batteries! (We need at most 1,000 pulses of the magnet.)

Addendum: Targetry Issues for Positron Production at a Linear Collider

Goal: 1 positron per electron.

A conventional thick target is overstressed by the requirements of NLC/TESLA – and the e^+ are unpolarized.

Option: use e[−] beam + helical undulator to produce 10-MeV polarized γ 's, which are converted to polarized e^+ in a thin target.

 \approx 1/10 the power density in target with the undulator scheme.

SLAC E-166 recently approved to demonstrate undulatorbased production of polarized to demonstrate undulator-
based production of polarized
positrons.

