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 Irradiation damage to carbon-based materials
 Irradiation effects on super-alloys

o Effects on conductivity

* Neutron irradiation
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Radiation effects on materials

Radiation damage results from interaction of bombarding
particles and atoms of the solid in 3 ways:

— electronic excitations =» no damage, only thermalization

— Elastic collisions (transferring of recoil energy to a lattice atom)
leading to displaced atoms (dpa) and the formation of interstitials
and vacancies. These are mobile at elevated temperatures

— Inelastic collisions =» transmutation products (generation of gases,
primarily He)
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OVERVIEW - Radiation effects on materials

« Microstructural changes due to displacement defects
and gas elements in grain boundaries

— Increase In yield strength (hardening) and loss of
ductility

— Irradiation creep
— swelling

— loss of ductility at high temperature/reduction of fatigue
lifetime
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Accelerator Target Interests

Extensive radiation damage studies in search the ideal materials to
serve as proton beam targets and other crucial beam-intercepting
components of the next generation particle accelerators

Primary concerns:
Absorption of beam-induced shock
premature failure due to fatigue

from long exposure

Anticipated condition cocktail far exceeds levels we have experience with

while past experience (reactor operation; experimental studies) can provide
guidance, extrapolation to conditions associated with multi-MW class
accelerators will be very risky

All one can do is inch ever closer to the desired conditions by dealing with
issues individually
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Irradiation damage to carbon-based materials
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ey Beam Studies: Graphite & CC Composite at the AGS
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Yet to know for sure
how carbon composites
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Expansion dL(um)

Thermal Expansion (inicrons)

Irradiation effects and “annealing” of carbon composites
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Signs of trouble !!

“weak” reinforcing fiber orientation

CONCERN: is damage characteristic
of the 2-D structure or inherent to all
carbon composites?
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Follow-up Irradiation Phase for 2-D; 3-D Carbon
composites and Graphite
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Condition of most heavily bombarded specimens after irradiation
(fluence ~10721 p/cm2)
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Graphite — Irradiation Effects on Bonding

While graphite has survived “quite” well in fission reactors (several dpa) it
does not seem to endure the high proton flux (fluence ~ 10"21 p/cm2)
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Irradiation damage to carbon-based materials
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Focus of Experimental Effort

Extensive research in fission reactors, BUT in accelerator
setting such as the one used:

— Higher production rates for He, H

— Pulsed energy input (flux, temperature, stresses)
— Higher fluxes =» higher displacement rates

— Protons vs. neutrons

« super-alloys
Explore the effects of proton/neutron flux

o | | e carbon composites
on these materials with interesting macroscopic _
e graphite

e fused silica

properties
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Irradiation studies on super-Invar

— “inflection” point at around 150 C

Effect of modest irradiation
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Expansion dL(um)

“annealing” of super-Invar
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Irradiation & temperature effects on Super-Invar
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Studies of Gum Metal (Ti-12Ta-9Nb-3V-6Zr-0O)

Super elasticity
Super plasticity

Invar property (near 0 linear expansion) over a
wide temp range

Elinvar property (constant elastic modulus over

[Fig.1] Position of Young's Modulus and Strength of GUM ME]
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Effects of radiation and temperature on Gum metal

Gum CTE versus Proton fluence
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Coefficient of Thermal Expansion(10°%/C)
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Linear Expansion (%)
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Irradiation effects on Tantalum
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In the presence of carbon, heated tantalum T > 500C carbide phases are formed on
surface. Carbon diffuses into the metal lattice. Reported by other investigators, diffusion
takes place as individual atoms !

BUT that did not explain the severe decomposition experienced. It is suspected that
tantalum reacts with silicon in the presence of a 3" component reacting with it. Threshold
temperature observed is 550 C.
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Interaction of Tantalum with radiation and
temperature environments

In the case of carbon and the formation of carbides, the carbon
atom is small and can be accommodated by the lattice

In the case of silicon, however, its atom is closer in size to that
of tantalum
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Tantalum

Radiation damage problemsin high power spallation neutron sources
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Linear Expansion (%)

Tungsten
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Thermal Expansion (microns)
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Fused Silica
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Irradiation damage to carbon-based materials
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Results such as these causes us to stop and take notice
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probes

Electrical resistivity =» Thermal conduct

I

DV (voltage drop)
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3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions
(to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by a factor of 6

W (1+ dpa) -> reduced by factor of ~4
Ta (1+ dpa) =  ~40% reduction
Ti-6Al-4V (~ 1dpa) =  ~ 10% reduction
Glidcop =  ~40% reduction
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Irradiation Exposure COMPLETED in June 2007

Materials include:

Ta

Copper/Glidcop

Isotropic graphite (1G-430)

Super-Invar/Gum metal

Ti-6Al-4V (including nano-deposited alumina film)

Materials are in a “cool-down’ phase

MARS analyses performed
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Irradiation Studies using the BNL Accelerator Complex
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Neutron Irradiation Studies using the BNL Accelerator Complex
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Neutron Irradiation Studies using the BNL Accelerator Complex

PROTON Flux & Dose

1"l
1

i Lk ML

-

0 5.500 11 16.500

1012 10! 1010 10? 10% 107 100 10° 10*

Proton flux (an*-2 s"-1)
Proten absorbed dose (Gy/s)

3rd High Power Targetry Workshop



Irradiation Studies using the BNL Accelerator Complex
NEUTRON Flux & Dose
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Irradiation Studies using the BNL Accelerator Complex
TOTAL Absorbed Dose
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Irradiation Studies using the BNL Accelerator Complex
Spectra
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Irradiation Studies using the BNL Accelerator Complex

Spectra
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SUMMARY

Information to-date is available from low power acceleratorsand
mostly from reactor (neutron irradiation) experience. Extrapolation is
RISKY

Establishing relationship between neutron and proton damage will
render useful the library of data from the neutron community. Effort
under way at BNL looking at both neutron and proton damage

Advancements in material technology (alloys, smart materials,
composites) provide hope BUT must be accompanied by R&D for
Irradiation damage

Experimental activities addressing one problem at a time (cannot have
cocktail all at once ...) are a must
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