

MERIT Experiment Window Study

N. Simos, BNL Van Graves, ORNL

Original Baseline Target Concept

Baseline Target Assembly Concept

DOUBLE Primary Window

Baseline Beam Window Concept

NEW Baseline Target Concept

NEW Baseline Target Concept

NEW Baseline Target Concept

CONCERNS realized in E951 experiment

vonMises Shock Stress in a 10-mil thick SSTL Window 2500 Beam = 16 TP/24 Gev with 0.5mm RMS sigma 225 2000 1750 1500 1250 1000 750 500 250 x 10 micro-s ۵ 8. .5 1.2 1.6 2 1 1.4 1.8 0 .4 2.4 .2 2.2 2.6 4000

Figure above depicts the tight beam spot requirement (0.5 x 0.5 mm rms) for target experiment at AGS

Induced shock stress in a window structure by 16 TP intensity beam and the spot above will likely fail most materials in a single short pulse (~2 ns)

MERIT Experiment Issues with SSTL Windows

The composition of Ti6Al4V Grade 5

Fabrication

- Weldability Fair
- Forging Rough 982°C (1800°F), finish 968°C (1775°F)
- Annealing 732°C (1350°F), 4hr, FC to 566°C (1050°F), A.C. F.C. not necessary for bars
- Solution Heat Treating Forgings
- Ageing 904-954°C (1660-1750°F), 5 min-2hrs, W.Q. 538°C (1000°F), 4hr, A.C

	Content
С	<0.08%
Fe	<0.25%
N ₂	<0.05%
02	<0.2%
Al	5.5-6.76%
V	3.5-4.5%
H ₂ (sheet)	<0.015%
H ₂ (bar)	<0.0125%
H ₂ (billet)	<0.01%
Ті	Balance

Ti-6Al-6V tested as beam window with the24 GeV AGS Beam (3.5 TP)

Physical Properties

Typical physical properties for Ti6Al4V.

Property	Typical Value
Density q/cm ³ (lb/ cu in)	4.42 (0.159)
Melting Range °C±15°C (°F)	1649 (3000)
Specific Heat J/kg.ºC (BTU/lb/ºF)	560 (0.134)
Volume Electrical Resistivity ohm.cm (ohm.in)	170 (67)
Thermal Conductivity W/m.K (BTU/ft.h.ºF)	7.2 (67)
Mean Co-Efficient of Thermal Expansion 0-100°C /°C (0- 212°F /°F)	8.6x10 ⁻⁶ (4.8)
Mean Co-Efficient of Thermal Expansion 0-300°C /°C (0- 572°F /°F)	9.2×10 ⁻⁶ (5.1)
Beta Transus ºC±15ºC (ºF)	999 (1830)

Mechanical Properties

Typical mechanical properties for Ti6Al4V.

Property	Minimum	Typical Value
Tensile Strength MPa (ksi)	897 (130)	1000 (145)
0.2% Proof Stress MPa (ksi)	828 (120)	910 (132)
Elongation Over 2 Inches %	10	18
Reduction in Area %	20	
Elastic Modulus GPa (Msi)		114 (17)
Hardness Rockwell C		36
Specified Bend Radius <0.070 in x Thickness		4.5
Specified Bend Radius >0.070 in x Thickness		5.0
Welded Bend Radius x Thickness	6	
Charpy, V-Notch Impact J (ft.lbf)		24 (18)

Beam Window Study on T-6Al-4V and Thickness Requirement

OTHER ON-GOING Studies:

(a) Beam-induced Hg jet destruction

LS-DYNA analysis with Eulerian-Lagrancian formulation to account for fluids and solids in the same analysis. Goal is to, hopefully, benchmark a simulation of the event with the test data. The benefit will be a clear understanding of how quickly the jet destructs that will in turn provide information as to how close the pulses in the real muon collider can be stacked

Preliminary Hg splash analysis induced by beam

Preliminary Hg/beam interaction analysis – NO Field Figure shows the zeroing of Hg density within the jet

Snapshots of stresses in the outer vessel generated by splashed Hg

OTHER ON-GOING Studies:

Eddy currents and magnetic forces in the Hg volume just prior to jetting out into the target/beam interaction volume with 15 Tesla field present. Based on ANSYS magneto-dynamic analysis looking to assess the forces the jet must overcome as it tries to come out of the nozzle

Conducting Volume (Hg) used in analysis. Air, steel and Ti not shown. Uniform 15 Tesla magnetic field is imposed

