Muon Collider 2011 June 27 – July 1, 2011, Telluride, Colorado

Simulation of High-Intensity Mercury Jet Targets Roman Samulyak, Tongfei Guo

AMS Department, Stony Brook University and Computational Science Center Brookhaven National Laboratory

Mercury Target Simulation Program

- FronTier MHD, a 3D code with explicitly tracked interfaces of multiphase / free surface fluids has been developed and used for mercury target simulations. New SPH code is in progress
 - Compressible and incompressible MHD regimes
 - Homogenized and discrete bubble models for cavitation
 - Realistic equation of states
- Simulation studies focus on
 - Distortion of mercury jets entering solenoid magnets
 - Disruption of mercury targets interacting with proton pulses
 - Benchmark with MERIT experimental data
 - Studies of the muon collider vs. neutrino factory targets

FronTier simulation of high speed jet cavitation and breakup

The FronTier Code

FronTier is a parallel 3D multiphysics code based on front tracking n Explicit tracking of material interfaces in free surface / multiphase flows
n Physics models include

n Compressible fluid dynamics

n MHD

n Flow in porous media

n Realistic EOS models, phase transition models
n Exact and approximate Riemann solvers
n Adaptive mesh refinement

Turbulent fluid mixing. Left: 2D Right: 3D (fragment of the interface)

New Smoothed Particle Hydrodynamics (SPH) Code

- A new code for free surface / multiphase MHD flows is being developed based on SPHYSICS from U. of Manchester
- SPH is a Lagrangian method based on particles
- Several smoother particle kernels, Riemann solvers, MUSCL-based schemes
- Advanced time stepping (Predictorcorrector, Verlet scheme, symplectic schemes)
- Easily adaptable to GPU architectures
- Complementary code to FronTier

MHD Simulation of the mercury jet interaction with proton pulses

- Performed simulations of initially cylindrical and elliptical jets interacting with proton pulses in magnetic fields
- Simulations predicted cavitation and surface filamentation
- Magnetic field reduced the amount of cavitation and velocity of filaments
- Reasonable agreement with MERIT experiments on disruption velocities

Image from MERIT experiment, B=10T

Mercury jet surface at 150 microseconds after the interaction with 12 teraproton pulse

Cavitation and growth of surface filaments

 To obtain the expansion velocity along the jet surface, we evaluate the expansion length in 4 typical positions. 14 GeV, 10 teraproton beam was used for energy deposition calculation

Growth of surface filaments

No magnetic field

B=10T

Muon Collider vs Neutrino Factory

Beam: 8 GeV, 4 MW, 3.125e15 particles/s, r.m.s. rad = 1.2 mm

Muon Collider: 15 bunches / s 66.7 ms interval 208 teraproton per bunch Neutrino Factory: 150 bunches / s 6.67 ms interval 20.8 teraproton per bunch

Maximum pressure (estimate): Muon Collider: Pmax = 110 kbar Neutrino Factory: Pmax = 11 kbar

Muon Collider

Jet disruption velocity: 103 m/s

Neutrino Factory

Jet disruption velocity: 25 m/s

SPH simulation of mercury jet dump (3D)

