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Damping of Radial Pinch Effects

Abstract

Calculations indicate that the radial pinch effect as a mercury jet enters a 20-T solenoid
magnet is strongly damped with time constant 4ρc2/σB2

0 ≈ 10−4 s, and less than one percent
of the initial kinetic energy of the jet is lost to Joule heating. Any disruption of the jet due
to the radial pinch will likely be localized to the tail of the jet, which may fall slightly behind
the bulk motion.

1 Estimate of Radial Motion of a Ring of Mercury

We consider a ring of mercury of radius r that is inside a jet which is moving with velocity
vz along the axis of a solenoid magnet, whose axial field is Bz(z).

The motion of the jet results in an apparent time dependence to the magnetic field in the
jet’s frame, which leads to eddy currents J, and hence to J×B forces that can distort the jet.
Of course, the magnetic field cannot change the energy of the mercury, and the Ohmic losses
of the eddy currents (and viscous damping of shear flow of the mercury) decrease the kinetic
energy of the jet. So in general, the jet will slow down as it passes through the magnetic
field, and the velocity reduction will be a function of position within the jet.

The magnetic flux Φ = πr2Bz through the ring varies with time because the ring is
moving through the spatially varying field Bz, and because the radius of the ring is varying
at rate vr = dr/dt. So, an azimuthal electric field Eφ is induced around the ring:

2πrEφ = −1

c

dΦ

dt
= −πr2

c

dBz

dt
− 2πrvrBz

c
= −πr2vz

c

∂Bz

∂z
− 2πrvrBz

c
. (1)

This electric field leads to an azimuthal current density

Jφ = σEφ = −σrvz

2c

∂Bz

∂z
− σvrBz

c
, (2)

where σ (≈ 1016/s in Gaussian units) is the conductivity of mercury (σHg ≈ σCu/60). This
azimuthal current interacts with the longitudinal magnetic field to produce a radial force
density,

fr =
JφBz

c
= −σrvzBz

2c2

∂Bz

∂z
− σvrB

2
z

c2
. (3)

The first term is negative as the mercury enters the strong-field region, and we speak of a
radial pinch. The second term arises only if the mercury takes on a radial velocity due to
the radial pinch, and then it opposes the pinch effect.
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What is the result of this force? Since mercury is essentially incompressible, it cannot
simply implode radially. Any radial motion must be accompanied by longitudinal motion;
the pinch will tend to extrude the jet into a longer, thinner form, possibly leading to breakup
of the jet. The extrusion will not be out the front of the jet, as the J × Br force opposes
this. The extrusion will be largely to the rear of the jet.

Here, we don’t offer a model of the extrusion process, but we do estimate the effect of
the second term of eq. (3), which damps the extrusion process.

For a first estimate, we approximate the longitudinal velocity vz as constant, which is
reasonable so long as the radial velocity vr remains small compared to this.

We completely ignore the inertial effect of the rest of the jet on the ring that will further
oppose any radial shrinkage of the jet. We simply suppose that the ring deforms longitudi-
nally without requiring any work, and write a radial equation of motion as

fr = ρ
dvr

dt
, (4)

where ρ = 13.6 g/cm3 is the mass density of mercury. Then,

dvr

dt
= −σrvzBz

2ρc2

∂Bz

∂z
− σvrB

2
z

ρc2
. (5)

If the solenoid magnet has inner diameter d and central field strength B0, the peak value
of ∂Bz/∂z is about B0/d, which occurs in the fringe field where Bz ≈ B0/2. So, the radial
acceleration can be estimated as

r̈ =
dvr

dt
≈ −σvzB

2
0

4ρc2d
r − σB2

0

4ρc2
ṙ = −σB2

0

4ρc2

(
vz

d
r + ṙ

)
. (6)

This equation holds for time interval d/vd during which the ring passes through the fringe
field of the magnet.

For B0 = 20 T = 2 × 105 G, the magnetic damping time in mercury,

τ =
4ρc2

σB2
0

, (7)

has the value 4 · 13.6 · (3 × 1010)2/1016 · (2 × 105)2 ≈ 1.2 × 10−4 sec.
If vz ≈ 20 m/s = 2000 cm/s, and the magnetic aperture is d ≈ 20 cm, then d/vz = 0.01 s

= 100 τ . That is, the radial pinch occurs over a time scale 100 times larger than the damping
time. Hence, the radial acceleration is quickly damped to a very small value, and the radial
velocity is given by eq. (6) as

ṙ = −vz

d
r. (8)

Then, the radius of the ring obeys
r = r0e

−vzt/d. (9)

This equation applies for time t ≈ d/vd, so we predict that the radius of the jet shrinks by
1/e as it enters the magnet.

We also see that the radial acceleration is roughly (vz/d)2r, which is about (vz/d)/(σB2
0/4ρc2) ≈

0.01 times that which would occur if there were no damping term in eq. (6).
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The reduction in radius of the ring is accompanied by a longitudinal stretch. Naively, if
the ring were inside a jet that was 10 cm long initially, a pinch to 1/3 of its initial radius
would require the jet to stretch to about 100 cm long. The longitudinal expansion of 90 cm
would occur in time 0.01 sec, so the longitudinal velocity required for this, relative to the
initial velocity vz, is 9000 cm/s = 90 m/s. But this is larger than our assumed initial value
of vz, and the implication is that the tail of the jet would be repulsed by the magnetic and
accelerated to greater than its initial energy.

2 Consistency with Conservation of Energy

To see whether this conclusion is reasonable, we recall that any reduction in the kinetic
energy of the jet is due to Joule heating losses (when we ignore viscosity, as is the case here).
If we simply insert the approximate results (8) and (9) in eq. (2), we would have j ≈ 0, and
there would be no energy loss to drive any changes in the velocity of the jet.

We must be more careful. As a guide, we note that the kinetic energy density in the jet
is

ke =
ρ

2
(v2

r + v2
z), (10)

whose time rate of change is

dke

dt
= ρ

(
vr

dvr

dt
+ vz

dvz

dt

)
. (11)

This should be equal to minus the rate of Joule heating per unit volume,

− duJoule

dt
= −j2

σ
= −σ

(
rvz

2c

∂Bz

∂z
+

vrBz

c

)2

= −vr

(
σrvzBz

2c2

∂Bz

∂z
+

σvrB
2
z

c2

)
− vz

⎡
⎣σrvrBz

2c2

∂Bz

∂z
+

σr2vz

4c2

(
∂Bz

∂z

)2
⎤
⎦ ,(12)

using eq. (2). Comparing with eq. (5), we see that the first term is indeed ρvrdvr/dt, so the
second must be ρvzdvz/dt. Indeed, the longitudinal j× B force is

ρ
dvz

dt
= fz =

jφBr

c
≈ −jφr

2c

∂Bz

∂z
= −σrvrBz

2c2

∂Bz

∂z
− σr2vz

4c2

(
∂Bz

∂z

)2

, (13)

using eq. (2).
Consistency with energy conservation requires that we deal with the radial and longitu-

dinal equations of motion (5) and (13) at the same time. Further, these two equations apply
only to an isolated ring of mercury. For an extended jet, these equations of motion must be
embedded in the Naiver-Stokes equation that describes the fluid dynamics of the mercury.
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3 Combined Analysis of Radial and Longitudinal

Motion of a Ring

Here, we continue to ignore viscosity, but pursue the simultaneous solution of eqs. (5) and
(13). For this, we present estimates based on the analytic form of the axial magnetic field
for a semi-infinite solenoid, as discussed in sec. 2.5 of [1]. The solenoid coil is taken to be
a thin cylindrical sheet of radius d/2, extending from z = 0 to +∞. When this is used to
approximate a physical solenoid of length l = αd, the center of physical solenoid corresponds
to z = αd/2 in the semi-infinite model, whose results should only be used for z less than this
value.

For a physical solenoid of central field B0, the corresponding axial magnetic field of the
semi-infinite solenoid is

Bz(0, z) =
B0

2

⎛
⎝1 +

z√
(d/2)2 + z2

⎞
⎠ , (14)

whose derivative is

B ′
z =

dBz(0, z)

dz
=

B0

2

(d/2)2

[(d/2)2 + z2]3/2
. (15)

We also note from [1] that the longitudinal j×B force on the induced current in the ring
leads to an equation of motion for the longitudinal velocity vz of the jet,

v′
z(r) = −σr2(B ′

z)
2

4ρc2
. (16)

Using eq. (14) in eq. (16) and integrating the equation of motion from −∞ to z assuming
that r is constant (i.e., neglecting magnetic damping), we find that vz is reduced by

Δvz(r) = −3πσr2B2
0

64ρc2d
. (17)

For the parameters used above, Δvz(1 cm) ≈ −2.4 m/s.
For the case when both vr and vz of the ring are time dependent, I integrated the equations

of motion (2) and (13) using an EXCEL spreadsheet [2]. The results indicate that eqs. (8)
and (9) are still fairly good, i.e., the radius of the ring would like to shrink to about 1/3 its
initial value as the ring enters the solenoid. But as the radius shrinks, the longitudinal force
(13) is reduced, and the calculation indicates almost no change in the longitudinal velocity
vz. The Joule losses are calculated to be only about 0.002 of the initial kinetic energy.

These results could well apply to an isolated ring. As the radius of the ring shrinks, its
longitudinal extent would grow to keep the volume constant, but the average longitudinal
velocity could remain essentially constant.

This behavior is, however, not consistent with the ring being part of an extended jet
(tube) of mercury. The ring cannot readily distort longitudinally because the surrounding
material also is trying to expand longitudinally. This will result in a longitudinal pressure
that can largely suppress any longitudinal motion of the mercury relative to its average
velocity.
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At the back of the jet, this internal pressure is unopposed by the air or vacuum, and the
tail of the jet may tend to disperse somewhat. However, the calculation indicates that there
is very little energy available to drive this dispersal, and should the mercury start to move
longitudinally relative to the initial vz, it will be subject to additional magnetic damping.
At the front of the jet, the longitudinal magnetic forces will almost certainly keep the jet
from dispersing. Hence, I predict that the distortion of the jet due to the radial pinch is
modest.

Recall also that an ANSYS model [3] by C. Lu that included the inertial effects showed
quite small effects due to the radial pinch (Fig. 1).

Figure 1: ANSYS model of a mercury jet entering a 20-T solenoid magnet
[3].

A Appendix: The Dipole Energy −µ ·B
Ralf Prigl has raised the interesting question as to the relation between the preceding energy
analysis and the energy

U = −µ · B (18)

of a magnetic dipole µ in an external magnetic field.
The expression (18) is deduced in considerations of a fixed magnetic moment that moves

so slowly in a magnetic field that induction effects may be neglected. It is not clear that it
has meaning in the present case.
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The quantity U is a configuration energy, meaning that if the geometric configuration of
the system changes work must be done corresponding to the change in U . In particular, the
force acting on the dipole can be derived from U according to F = −∇U .

Recall that a magnetic field cannot do work on a charged particle, so conversely a charged
particle cannot do work on a magnetic field. Hence, we should not think of U as being stored
in the magnetic field.1 Rather, energy U is stored in the external agent that holds the dipole
in the magnetic field.2

The present problem is not one of magnetostatics, and there is no external agent inter-
acting mechanically with the mercury. If eq. (18) is to have any meaning, it would have to
refer to the kinetic energy and/or the thermal energy of the mercury.

To explore the possible meaning of eq. (18) we consider the case of a solid metal ring of
fixed radius r. We restrict the discussion to rings coaxial with the magnet. Then, when the
ring is carrying current density Jφ, the magnitude of its magnetic moment is

μ =
IA

c
=

πr2I

c
=

πr2aJφ

c
=

rJφVol

2c
, (19)

where a is the cross sectional area of the ring, whose volume is Vol = 2πra. If the current is
induced by longitudinal motion of the ring with velocity vz, then from eq. (2) the magnitude
of the current density is

Jφ =
σrvz

2c

∂Bz

∂z
, (20)

and the magnetic moment is

μ =
σr2vzVol

4c2

∂Bz

∂z
. (21)

The magnetic moment vector is opposite to the magnetic field B that induces it, according
to Lenz’ law. Hence, the energy (18) is positive, with value

U =
σr2vzBzVol

4c2

∂Bz

∂z
. (22)

To compare with previous results, I cast this energy into the form of an energy density per
unit volume of the ring:

u =
U

Vol
=

σr2vzBz

4c2

∂Bz

∂z
. (23)

Let us now see whether the longitudinal force [eq. (13) with vr set to zero] on the moving
ring can be deduced from eq. (23):

fz
?
= −du

dz
= −σr2

4c2

⎡
⎣dvz

dz
Bz

∂Bz

∂z
+ vz

(
∂Bz

∂z

)2

+ vzBz
∂2Bz

∂z2

⎤
⎦ . (24)

The middle term of eq. (24) is indeed the desired result for fz, but the other two terms do
not sum to zero, since dvz/dz = fz/ρvz.

I conclude that eq. (18) does not represent a meaningful energy for the present problem.

1Indeed, a simple calculation shows that the interaction energy
∫

Bdipole · BexternaldVol/4π is zero for a
dipole in a uniform external field, independent of the orientation of the dipole relative to the field.

2Recall Earnshaw’s theorem that there is no equilibrium possible for a system of charges in a static
electric or magnetic field – and that a dipole can be thought of as a pair of magnetic charges.
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