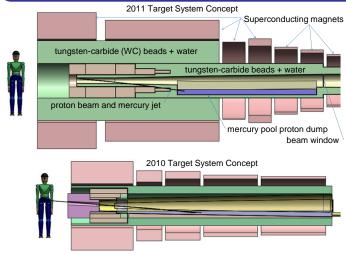
A SOLENOID CAPTURE SYSTEM FOR A MUON COLLIDER

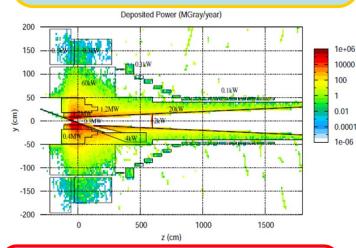
(TUP265, PAC11)

H.G. Kirk,* R.C. Fernow, N. Souchlas, BNL, Upton, NY 11973, USA X. Ding, UCLA, Los Angeles, CA 90095, USA V.B. Graves, ORNL, Oak Ridge, TN 37831, USA R.J. Weggel, Particle Beam Lasers, Northridge, CA 91324, USA

R.J. Weggel, Particle Beam Lasers, Northridge, CA 91324, USA

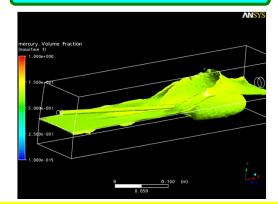

K.T. McDonald, Princeton University, Princeton, NJ 08544, USA

C.J. Densham, P. Loveridge, RAL, Chilton, OX11 OQX, UK


T. Guo, F. Ladeinde, R. Samulyak, Y. Zhan, SUNY Stony Brook, Stony Brook, NY 11794, USA

J.J. Back, U. Warwick, Coventry CV4 7AL, UK

The concept for a muon-production system for a muon collider (or neutrino factory) calls for an intense 4-MW-class proton beam impinging upon a free-flowing mercury jet immersed in a 20-T solenoid field. While the principle of a liquid-metal jet target inside a 20-T solenoid has been validated by the **MERIT experiment** for beam pulses equivalent to 4-MW beam power at 50 Hz, substantial effort is still required to turn this concept into a viable engineering design.


Present concept (top) of a continuous mercury jet target for an intense proton beam. The jet beam is tilted by ~ 70 mrad and with respect to a 20-T solenoid magnet that conducts low-momentum pions into a decay channel. To obtain a 10-year lifetime of the superconducting magnets against radiation damage, a substantial shield of WC beads + water is envisaged. This leads to a much more massive configuration that previously considered (bottom), and a stored magnetic energy of ≈ 4 GJ.

Above: Power deposition in the superconducting magnets and the tungsten-carbide + water shield inside them, according to a FLUKA simulation Approximately 2.4 MW must be dissipated in the shield. Some 800 kW flows out of the target system into the downstream beam-transport elements. See also TUP179.

Item	Neutrino Factory IDS / Muon Collider (MC)	Comments
Beam Power	4 MW	No existing target system will survive at this power
E,	8 GeV	π yield for fixed beam power peaks at ~ 8 GeV
Rep Rate	50 Hz (15 Hz, MC)	Lower rep rate could be favorable
Bunch width	2 ± 1 ns	Very challenging for proton driver
Bunches/pulse	3 (1, MC)	3-ns bunches easier if 3 bunches per pulse
Bunch spacing (MC)	~ 120 µs	Disruption of liquid target takes longer than 200 μs
Beam dump	< 5 m from target	Very challenging for target system
π Capture system	20-T Solenoid	High field solenoid "cools" rms emittance
Stored energy	4 GJ	Quench-protection system a significant challenge
π Capture energy	40 < T _x < 300 MeV	Much lower energy than for v Superbeams
Target geometry	Free liquid jet	Moving target, replaced every pulse
Target velocity	20 m/s	Target moves by 50 cm ~ 3 int. lengths per pulse
Target material	Нд	High-Z favored; could also be Pb-Bi eutectic
Target radius	4 mm	Proton beam σ_r = 0.3 of target radius = 1.2 mm
Beam angle	≈ 97 mrad	Thin target at angle to capture axis maximizes π 's
Beam-jet angle	≈ 27 mrad	Beam/jet angle \approx 27 mrad, \Rightarrow 2 int. lengths
Dump material	Нд	Hg pool serves as dump and jet collector
Magnet shield	WC beads + water	Shield must dissipate 2.4 MW

Above: Baseline Parameters for the target system.

Above: A major challenge is incorporation of the proton beam dump inside the superconducting magnet cryostat. The mercury collection pool can serve as this dump, but the 3-kW mechanical power of the mercury jet will disrupt the pool, unless mitigated by a splash suppressor.

Above : The downstream Be window of the mercury-containment vessel intercepts ≈ 1 kW of power, and must be suitably cooled (and replaceable).