MUON COLLIDERS: STATUS OF R&D AND FUTURE PLANS

Kirk T. McDonald,* Princeton U., Princeton, NJ 08544, for the Muon Collider Collaboration[†]

Abstract

The case for a future high-energy collider based on muon beams is reviewed briefly.

1 THE Y2K PROBLEM FOR PARTICLE PHYSICS

- Can elementary particle physics prosper for a 2nd century with laboratory experiments based on innovative particle sources?
- Can a full range of new phenomena be investigated?
 - Neutrino mass \Rightarrow a 2nd 3 \times 3 mixing matrix.
 - Precision studies of Higgs bosons.
 - A rich supersymmetric sector (with manifestations of higher dimensions).
 - ... And more ...
- Will our investment in future accelerators result in more cost-effective technology, capable of extension to 10's of TeV of constituent CoM energy?

Many of us believe that a **Muon Collider** [1, 2, 3, 4, 5, 6] is the best answer to the above.

2 WHAT IS A MUON COLLIDER?

An accelerator complex in which

- Muons (both μ⁺ and μ⁻) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10⁶ by ionization cooling [7, 8].
- The cooled muons are accelerated and then stored in a ring [9, 10].
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams and spallation neutron beams are available as byproducts.

Muons decay: $\mu \rightarrow e\nu \qquad \Rightarrow$

- Cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

Table 1:	Baseline	parameters	for muo	n colliders	at 3 TeV,
400 GeV	/ (top facto	ory) and 10	0 GeV (1	ight Higgs	factory).

CoM energy (TeV)	3	0.4	0.1
p energy (GeV)	16	16	16
p's/bunch	2.5e13	2.5e13	5e13
Bunches/fill	4	4	2
Rep. rate (Hz)	15	15	15
p power (MW)	4	4	4
μ /bunch	2e12	2e12	4e12
μ power (MW)	28	4	1
Wall power (MW)	204	120	81
Collider circum. (m)	6000	1000	350
Ave. bending field (T)	5.2	4.7	3
Depth (m)	500	100	10
Rms $\Delta P/P$ (%)	0.16	0.14	0.003-0.12
6d $\epsilon_6 (\pi m)^3$	1.7e - 10	1.7e - 10	1.7e - 10
Rms ϵ_n (π mm-mrad)	50	50	85-290
β^*, σ_z (cm)	0.3	2.6	4.1-14.1
$\sigma_r \operatorname{spot}(\mu \mathrm{m})$	3.2	26	86-294
σ_{θ} IP (mrad)	1.1	1.0	2.1
Tune shift	0.044	0.044	0.051-0.022
$n_{ m turns}$ (effective)	785	700	450
Luminosity $(cm^{-2}s^{-1})$	7e34	1e33	1e31-1.2e32
Higgs/year			2-4e3

Higgs/year assumes a cross section $\sigma = 5 \times 10^4$ fb; a Higgs width $\Gamma = 2.7$ MeV; 1 year = 10^7 s.

Figure 1: Comparison of footprints of various future colliders.

3 THE CASE FOR A MUON COLLIDER

• More affordable than an e^+e^- collider at the TeV (LHC) scale.

^{*} mcdonald@puphep.princeton.edu, http://puhep1.princeton.edu/mumu/ † http://www.cap.bnl.gov/mumu/mu_home_page.html

Figure 2: A First Muon Collider to study light-Higgs production.

- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .
 - Muon polarization $\approx 25\%$, \Rightarrow can determine E_{beam} to 10^{-5} via g 2 spin precession [11].

Figure 3: The effect of beam energy resolution at the $t\overline{t}$ threshold.

- Initial machine could produce light Higgs via *s*-channel [5]:
 - Higgs coupling to μ is $(m_{\mu}/m_e)^2 \approx 40,000 \times$ that to e.
 - Beam energy resolution at a muon collider $< 10^{-5}$, \Rightarrow can measure Higgs width directly.
 - Add rings to 3 TeV later.
- Neutrino beams from μ decay about 10^4 hotter than present.
 - Possible initial scenario in a low-energy muon storage ring [12].
 - Study *CP* violation via *CP* conjugate initial states:

$$\begin{cases} \mu^+ \to e^+ \overline{\nu}_\mu \nu_e \\ \mu^- \to e^- \nu_\mu \overline{\nu}_e \end{cases}$$

4 TECHNICAL CHALLENGES

[References in this section are to papers contributed to PAC'99.]

- Proton Driver, 16-GeV, 15 Hz, 4MW, 1-ns bunch [19].
- Targetry and Capture [28, 32, 35, 49, 51, 53].
- Muon Cooling [14, 15, 16, 21, 24, 25, 27, 29, 33, 34, 36, 42, 48, 50, 52, 54, 55, 56].
- Acceleration [13, 31, 44, 57].

Figure 4: Muon collider components: A. Proton linac; B. Proton driver; C. Proton target; D. Capture solenoid; E. Phase rotation channel; F. Transverse cooling; G. Longitudinal cooling; H. Accelerating linac; I. Arcs of recirculator; J. Accelerating linac; L. Collider ring.

• Storage rings [17, 18, 37, 38, 39, 40, 41, 43, 47].

Figure 5: Collider ring lattice near the interaction point.

- Interaction region and detector design.
- Neutrino beams [22, 26, 30, 45, 46].

Figure 6: Tungsten masks around the interaction region.

Figure 7: Sketch of an accelerator complex to produce neutrino beams via a muon storage ring.

5 MUON COLLIDER R&D PROGRAM

5.1 Targetry and Capture at a Muon Collider Source

Figure 8: Baseline targetry scenario using a liquid metal jet inside a 20-T magnet.

To achieve useful physics luminosity, a muon collider must produce about $10^{14}\;\mu/{\rm sec}.$

• \Rightarrow > 10¹⁵ proton/sec onto a high-Z target - 4 MW beam power.

- Capture pions of $P_{\perp} \lesssim 200 \text{ MeV}/c$ in a 20-T solenoid magnet.
- Transfer the pions into a 1.25-T-solenoid decay channel.
- Compress π/μ bunch energy with rf cavities and deliver to muon cooling channel.

Targetry Issues:

- 1-ns beam pulse \Rightarrow shock heating of target.
- Eddy currents arise as metal jet enters the capture magnet.

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests) 4,000 frames per second, Jet speed: 20 ms-1, diameter: 3 mm, Reynold's Number:>100,000 A. Ponoet

Figure 9: Hg jet studied at CERN, but not in beam or magnetic field.

• Targetry area also contains beam dump.

Targetry R&D Goals:

- Long Term: Provide a facility to test key components of the front-end of a muon collider in realistic beam conditions.
- Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields. (Change target technology if encounter severe difficulties.)
- Mid Term (3-4 years): Add 20-T magnet to BNL AGS beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) downstream of target; Characterize pion yield.

5.2 Ionization Cooling

The Theory:

- Ionization: takes momentum away.
- RF acceleration: puts momentum back along z axis.

Figure 10: The proposed facility for targetry R&D at BNL [58, 59].

Particles are accelerated longitudinally

Figure 11: The concept of transverse ionization cooling.

- \Rightarrow Transverse "cooling"; O'Neill [7] (1956).
- This won't work for electrons or protons.
- So use muons: Balbekov [8], Budker [9], Skrinsky [10], late 1960's.

The Details are Delicate:

• Use channel of LH₂ absorbers, rf cavities and alternating solenoids (to avoid buildup of angular momentum).

Figure 12: One cell of the cooling channel.

- But, the energy spread rises due to "straggling".
- ⇒ Must exchange longitudinal and transverse emittance frequently to avoid beam loss due to bunch spreading.
- Can reduce energy spread by a wedge absorber at a momentum dispersion point:

Figure 13: Longitudinal/transverse emittance exchange in a wedge absorber.

Cooling Demonstration Experiment:

- Test basic cooling components:
 - Alternating solenoid lattice, RF cavities, LH₂ absorber.
 - Lithium lens (for final cooling).
 - Dispersion + wedge absorbers to exchange longitudinal and transverse phase space.
- Track individual muons; simulate a bunch in software.

Figure 14: Possible site for the muon cooling experiment in the Fermilab Meson Hall [60, 61].

Figure 15: Side view of three cells of a cooling channel, incorporating LH_2 absorbers, 15-T alternating solenoid magnets, and high-gradient 800-MHz rf cavities.

Figure 16: Emittance diagnostics via a bent solenoid spectrometer.

6 REFERENCES

- [1] http://www.cap.bnl.gov/mumu/status_report.html
- [2] http://www.cap.bnl.gov/mumu/book.html
- [3] AIP Conf. Proc. **352** (1995).
- [4] AIP Conf. Proc. 372 (1996).
- [5] AIP Conf. Proc. **435** (1998).
- [6] AIP Conf. Proc. 441 (1998).
- [7] G.K. O'Neill, Phys. Rev. 102, 1418 (1956).
- [8] Yu.M. Ado and V.I. Balbekov, Sov. Atomic Energy 31, 731 (1971).
- [9] G.I. Budker, see AIP Conf. Proc. 352, 4 (1996).
- [10] A.N. Skrinsky, see AIP Conf. Proc. 352, 6 (1996).
- [11] http://xxx.lanl.gov/ps/hep-ex/9801004
- [12] http://nicewww.cern.ch/~autin/MuonsAtCERN/ Neutrino.htm
- [13] http://ftp.pac99.bnl.gov/Papers/Wpac/MOP86.pdf
- [14] http://ftp.pac99.bnl.gov/Papers/Wpac/MOP98.pdf
- [15] http://ftp.pac99.bnl.gov/Papers/Wpac/TUA147.pdf
- [16] http://ftp.pac99.bnl.gov/Papers/Wpac/TUP101.pdf
- [17] http://ftp.pac99.bnl.gov/Papers/Wpac/TUP129.pdf
- [18] http://ftp.pac99.bnl.gov/Papers/Wpac/TUP154.pdf
- [19] http://ftp.pac99.bnl.gov/Papers/Wpac/WEA163.pdf
- [20] http://ftp.pac99.bnl.gov/Papers/Wpac/WEBR4.pdf
- [21] http://ftp.pac99.bnl.gov/Papers/Wpac/WEBR5.pdf
- [22] http://ftp.pac99.bnl.gov/Papers/Wpac/WEBR6.pdf
- [23] http://ftp.pac99.bnl.gov/Papers/Wpac/WEP118.pdf
- [24] http://ftp.pac99.bnl.gov/Papers/Wpac/THA130.pdf
- [25] http://ftp.pac99.bnl.gov/Papers/Wpac/THP31.pdf
- [26] http://ftp.pac99.bnl.gov/Papers/Wpac/THP32.pdf
- [27] http://ftp.pac99.bnl.gov/Papers/Wpac/THP33.pdf

[28]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP34.pdf
[29]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP35.pdf
[30]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP36.pdf
[31]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP37.pdf
[32]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP38.pdf
[33]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP39.pdf
[34]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP40.pdf
[35]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP41.pdf
[36]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP42.pdf
[37]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP44.pdf
[38]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP44.pdf
[39]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP45.pdf
[40]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP46.pdf
[41]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP47.pdf
[42]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP48.pdf
[43]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP49.pdf
[44]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP50.pdf
[45]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP51.pdf
[46]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP52.pdf
[47]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP53.pdf
[48]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP54.pdf
[49]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP55.pdf
[50]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP56.pdf
[51]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP57.pdf
[52]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP58.pdf
[53]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP59.pdf
[54]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP60.pdf
[55]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP83.pdf
[56]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP85.pdf
[57]	http://ftp.pac99.bnl.gov/Papers/Wpac/THP86.pdf
[58]	http://puhep1.princeton.edu/mumu/target/ targetprop.ps
[59]	http://puhep1.princeton.edu/mumu/target/
[60]	http://www.fnal.gov/projects/muon_collider/
[61]	http://www.fnal.gov/projects/muon_collider/cool/ cool.html