

# **Recent MAP Reviews**

### **Front End Recommendations**

### **Front End Studies Meeting**

#### **September 25, 2012**



Harold G. Kirk Brookhaven National Laboratory



**General but also apply to the Front End:** 

- Perform a global optimization of the cooling channel parameters to maximize the MC/NF performance.
- Find additional opportunities for benchmarking the cooling simulation codes.
- Include all possible heating effects in the cooling simulation codes and explore possibilities to benchmark against experimental long-term emittance evolutions.
- Show beam gymnastics through the entire accelerating system, including at least beam loading effects, by a front to end simulation.
- Study if the 300-mm aperture in 201-MHz cavities is necessary.
- Develop clear definition of the "safe" accelerating gradient.





## **MuPac Recommendations II**

#### **Front End Specific:**

• Study the robustness of the front end RF system, with its large number of cavity frequencies and voltages, and determine an approach for further optimization of the system.





#### **DOE Review Recommendations**





These are general recommendations that also applies to the Front End magnets

- Determine if the magnetic coupling between neighboring magnets in the cooling systems has the potential to cause a chain reaction whereby all magnets are affected if just one of them quenches. Design a mitigation strategy, if necessary.
- Produce a list of all magnetic elements that give number, radius, field, length and the radiation deposition.





Some general comments that apply also to the Front End

- Continue to work with the SLAC code group for the RF design and breakdown studies, and for field emission simulations.
- Develop, over time, a more end-to-end simulation capability that can couple sub-systems together to the extent required.
- Carry out benchmarking and verification studies as needed where key physics problems are concerned.







- Develop a table defining performance parameters to clearly state operational limits for different cavities in high magnetic field. Define safe accelerating gradient. (November 2012)
- Explore ways to expedite the delivery of the new magnet to be able to test the 201 MHz cavity in high magnetic fields in FY13.

