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CAVITATION IN A MERCURY TARGET

C. D. West

ABSTRACT

Recent theoretical work on the formation of bubble nucleation centers by energetic particles
leads to some reasonably credible calculations of the maximum negative pressure that might be
sustained without bubble formation in the mercury target of the Spallation Neutron Source.

1.  INTRODUCTION

In a sufficiently superheated liquid, the energy deposited by an energetic particle can cause
local boiling that, after a short time, leads to a bubble of visible size. This effect was sought and
observed in 1952 by Donald Glaser, during the course of his well-thought-out and persistent
search for a new device that could reveal the tracks of high-energy particles. For a wonderful
description of the desired properties of the detector and the thought process and experiments that
led him to developing the bubble chamber and subsequently receiving a Nobel Prize for his
research, see Glaser (1994).

The idea of bubble nucleation by the local formation of vapor evolved gradually; initially,
the mechanism was imagined to be an electrostatic one, like the formation of droplets in the
Wilson Cloud Chamber (which was already well known). In 1957, an influential paper written by
Frederick Seitz—the first paper in the first edition of the first volume of a new journal, Physics
of Fluids—quantified the local boiling theory, equating the energy expected to be deposited by
the particle to the latent heat of vaporization and other smaller energy terms involved in the
formation of the bubble (Seitz, 1957). This theory was beautifully confirmed by experimental
measurements carried out by graduate student Georg Riepe (Riepe and Hahn, 1961). The
experiments involved measuring the degree of superheating necessary to form bubbles around the
tracks of 210Po, 212Po, and 212Bi alpha recoils in propane and Freon 12. The liquid temperature was
in the typical operating region of a bubble chamber—approximately two-thirds of the way
between the normal boiling point and the critical temperature—and the liquid was initially held
at its saturation pressure, so no boiling occurred. The pressure reduction needed to form bubbles
from the alpha decay of polonium, or thorium C and thorium C1, dissolved in the liquid was then
measured. The calculated energy balance of bubble nucleation and the energy available from the
decay matched the prediction of Seitz’s theory within a few percent, a great achievement.

When similar experiments were later carried out with cold liquids, below their normal
boiling points, the liquids had to be placed under negative pressure (i.e., tensile stress) for
macroscopic bubbles to be formed by alpha decay recoil particles (Hahn, 1961). The calculated
energy balance typically differed by an order of magnitude from calculations based on Seitz’s
theory of the positive-pressure bubble chamber (Hahn and Peacock, 1963). It was soon recog-
nized (West, 1967) that Seitz’s basic physical model of local heating could also be applied to this
situation, but that a different algebraic formulation of the model was appropriate for liquids
under large negative pressures. However, although a fundamental reason for the discrepancy was
thus identified, quantitative agreement between the calculated and measured pressure threshold
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for bubble formation, although improved, was still very poor compared with the agreement
achieved by Riepe and Hahn’s bubble chamber results.

More recently, a further development of the theory has led to much improved agreement
(West, 1998), and that new model is applied in this report to calculate the minimum negative
pressure that might be required to nucleate bubbles by recoiling mercury nuclei or heavy decay
products of mercury in the target of the Spallation Neutron Source (SNS), planned at Oak Ridge.

2.  THE NUCLEATION PROCESS

An energetic particle that is slowing down gives up its kinetic energy to atoms of the
medium; that is, it heats the medium locally along its track. The heating can cause local
vaporization, thus forming a small bubble. If that bubble is large enough, the pressure of vapor
inside can overcome the surface tension forces tending to collapse it, and the bubble will grow
indefinitely. A smaller bubble will soon collapse and disappear as surface tension raises the
internal pressure enough to recondense the vapor. The growth, if it is to occur at all, must take
place in a very short time, because the small amount of heat involved within a very small volume
is soon dissipated, by conduction, into the surrounding liquid. 

Two energetic conditions must be satisfied to turn a small heated volume of liquid into
vapor: (1) there must be enough energy to provide the enthalpy of evaporation (this is the largest
energy term in Seitz’s bubble chamber theory), and (2) the liquid must be hot enough that the
probability of spontaneous nucleation of boiling within that volume is high.

The second condition may require some further explanation. It has long been known that
although most pure liquids have a well-defined boiling point, a clean sample in a clean container
can often be raised to a much higher temperature before boiling erupts; in fact, the classic advice
given to physicists (e.g., Chute, 1896) is to measure boiling points by placing a thermometer in
the vapor above the boiling liquid rather than in the liquid itself. A simple criterion for spontane-
ous nucleation to occur, used by West (1998), is that the small heated volume be raised to the
critical point, in which case it can certainly no longer remain liquid.

It turns out that in hot liquids, such as in a bubble chamber, the enthalpy difference, Hca,
between the subcooled ambient condition and the critical point is less than the enthalpy of
evaporation, Hvap, so that if the energy deposition from a particle is sufficient to evaporate
enough liquid to form a bubble of the critical size (Seitz’s criterion), it is also enough to ensure
homogeneous nucleation. In a cold liquid, the opposite is true, and in order for a particle to have
a high probability of forming a macroscopic bubble, it must deposit more energy than the Seitz
criterion alone would require. Remember that Seitz explicitly and appropriately applied his
theory to the former situation only. Figure 1 compares the two enthalpy terms for a particular
liquid, isopentane, that has been used both in bubble chambers and in cavitation experiments
(Table 1). It is unfortunate that no measurements have been reported on the temperature
dependence of the threshold for negative- and positive-pressure bubble nucleation by the same
source of particles, such as neutrons or a dissolved alpha emitter, in the same liquid—an
experiment that begs to be done.
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3.  THRESHOLD FOR MACROSCOPIC BUBBLE FORMATION

Estimation of the minimum negative pressure that will form a macroscopic cavitation
bubble from a certain amount of energy, Eav, provided by an energetic particle is rather compli-
cated, even in the particular case where the linear rate of energy deposition, dE/dx, is independ-
ent of the energy (West, 1998). Besides the enthalpy difference, Hca, the threshold depends on the
surface tension and density of the liquid, its density and pressure at the critical point, its
viscosity, its thermal diffusivity, and the value of dE/dx or the initial energy of the particle.

Fortunately, the problem is greatly simplified if the energy requirements of the initial
bubble formation are dominated by kinetic terms, that is, by the viscosity and/or the amount of
kinetic energy that must be imparted to the liquid around the growing bubble if it is to reach the
critical size before its heat content is lost by conduction. It turns out that this is true for mercury,
as shown in Appendix A. In such a case, the minimum negative pressure Pneg (threshold) that will
lead to a bubble of macroscopic size is given by a simple equation, Eq. (63) in West (1998):

, (1)P
H

E
neg

crit ca

av

threshold) = 2
3

( σ
πρ3 4

where

1 =  the surface tension,
'crit =  the density at the critical point,
Hca =  the enthalpy difference between the initial condition and the critical point, and
Eav =  the available energy (described in Sect. 4).

Liquid enthalpy values do not appear to be available for negative-pressure conditions, but
liquid enthalpy is not very dependent on pressure and for convenience is here evaluated at the
initial temperature of the liquid and at a pressure 1% above the corresponding saturation pressure
(to ensure that the evaluation is made under conditions where the substance is a liquid, not a
vapor). The mercury properties needed for the calculations were taken from the Yaws data base
(Yaws, 1996) and are listed in Appendix B.

4.  AVAILABLE ENERGY

Peter Fu kindly provided calculated values for the range and dE/dx of 202Hg in a medium of
natural mercury (Fu, 1999). Some of his data, calculated from a version of the SPAR code that he
modified to work with higher-atomic-number particles, are listed in Table 2. The upper energy
limit shown in the table is approximately 20 MeV, which would be the maximum energy that
could be given to an elastically recoiling mercury atom by a 1-GeV proton—the proton energy in
the SNS.

Examination of Table 2 shows that in this range of energies, the linear rate of energy
deposition, dE/dx, is highest at the beginning of the particle’s track. Therefore, the energy
available, Eav, over any distance less than the range is greatest at the beginning of the track.

Because dE/dx is energy dependent, the range is not proportional to the initial energy, but
Fig. 2 (prepared with TK Solver) shows that a second-order polynomial relationship fits the data
well.
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Table 2.  Range and dE/dx for 202Hg in natural mercury

Initial energy 
(MeV)

Range 
(× 10–5 cm)

Initial dE/dx 
(× 105 MeV/cm)

21.15  
19.41  
17.81  
14.99  
10.63  
5.34 
4.90 
2.07 
1.04 
0.956
0.738
0.523
0.480
0.203
0.102
0.051

17.711  
16.498  
15.369  
13.289  
9.873
5.346
4.949
2.311
1.290
1.202
0.974
0.743
0.694
0.365
0.225
0.142

1.461
1.423
1.388
1.325
1.226
1.111
1.104
1.034
0.978
0.970
0.944
0.904
0.894
0.772
0.663
0.552

Fig. 2.  Range of 202Hg in natural mercury ( second-order polynomial fit).
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Changing to S.I. units for convenience in the calculations to follow, the equation of the
fitted curve, with range R measured metres and energy in joules, is

(2)R E r r E r E( ) ≈ + +1 2 3
2 ,

where

r1 = 2.091 × 10–8 m,

r2 = 6.275 × 105 m/J, and

r3 = –3.371 × 1016 m/J2.

The enthalpy that must be added to form a sphere of fluid with radius Ro at the critical point
is

E R H=
4

3

3
 o crit caπ ρ ,

and the largest possible nucleation center is formed when

(3)
4

3
o crit ca av π ρR H E

3 = ,

where Eav is the energy deposited, by the recoil, in a distance of 2Ro [see Sect. 8.3 of West
(1998)]. 

If the recoil track is very long, the largest nucleation center will be formed in the first part of
the track where dE/dx is highest; if the track is short enough, it will be formed using the whole
recoil energy.

In the former case, one can calculate the energy Eav deposited in a distance 2Ro from the
beginning of the track by writing 

Range (Einitial) – Range (Einitial – Eav) = 2Ro   .

Now substitute the range-vs-energy relationship of Eq. (2),

r r E r E r r E E r E E R1 2 3 1 2 3

2

+ + − + − + − =initial initial

2

initial av initial av ob g b g b g ,

or, rearranging and simplifying,

(4)E E r r E R rav initial av o
2

2 3 32 2 0− + + =b g .

Now simplify the appearance of Eq. (3) by writing

H H= 4

3
πρcrit ca .
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The variable H is actually the enthalpy per unit volume needed to raise the liquid to the critical
point multiplied by the constant 4�/3. Equation (3) now reads 

Eav  =  HRo
3   , (5)

and substituting that relationship into Eq. (4) yields

H R E r r HR R r2
2 3 32 2 0o

6
initial o

3
o− + + =b g ,

or dividing by H2Ro,

(6a)R
E r r

H
R

r

H
o

5 initial

o

2− + + =2 2
02 3 3

2
.

The roots of this quintic equation can easily be found numerically, for example by using the
BISECT program in the TK Solver library. However, in the range of values for Einitial of interest
in this report (Einitial < 20 MeV), it turns out that the fifth-order term is negligible. 

For example, if Einitial = 20 MeV,

Einitial MeV J= = ×
−

20 3 204 10
12

. ,

r2/r3 = 6.275 × 105 / (–3.371 × 1016) = –18.61 × 10–12 J   ,

H = (4�/3) × 17.746 × 103 × 62.00 × 103 = 4.608 × 109 J/m3   ,

and Eq. (6a) becomes

R Ro o

5 21 2 36
2 65 10 2 79 10 0+ − =× ×

− −
. . .

The solution for Ro obtained by ignoring the fifth-order term is

 Ro = nm   2.794 × 10 2.65 × 10 32.5
−36 −21( ) = .

Then ~ 3.6 × 10–38, which is two orders of magnitude less than the constant term ofRo
5

2.79 × 10–36. Therefore Eq. (6a), for this liquid in this range of particle energies, can be approxi-
mated by

(6b)R
H r rE

o

initial

≈
+

1

23 2c h .

To verify this, Table 3 compares values of Ro computed from Eqs. (6a) and (6b) over a
range of initial energies from 0.1 to 20 MeV. The values from Eq. (6b) are all within 1% of the 
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Table 3.  Values of Ro calculated from the quintic equation 
and from the approximate formula

Initial energy 
(MeV)

Ro from Eq. (6a)
(nm)

Ro from Eq. (6b) 
(nm)

  0.1
  0.2
  0.4
  0.8
  1.0
  2.0
  4.0
  8.0
10.0
20.0

26.264
26.286
26.331
26.422
26.467
26.700
27.182
28.231
28.802
32.274

26.322
26.345
26.391
26.483
26.529
26.765
27.255
28.322
28.905
32.478

solution from Eq. (6a), and the rest of these calculations will therefore use the approximate, but
much simpler, Eq. (6b).

The largest nucleation center that could possibly be formed, if all of the initial recoil energy
were used, would have a radius Ro such that [see Eq. (3)]

E R Hin itia l o
3

crit ca= 4

3
π ρ .

Substituting H = (4�/3) !crit Hca and rearranging yields

(7)R
E

Ho
initial=

3
.

However, if the total range of a recoil with energy Einitial is greater than 2Ro, only that part of
the energy deposited within a distance 2Ro would be available to the nucleation center, and
Eq. (7) would apply. A convenient way of expressing this, particularly if TK Solver is used to
evaluate the equations, based on the approximate Eq. (6b), is

(8)R
E

H H r E r
o

initial

initial

MIN=
+

L
N
M
M

O
Q
P
P

3 1

23 2

, ,b g
where, in the language of TK Solver, MIN(X, Y) means the smaller of the two values X and Y.

Table 4 shows the two parenthetical components in Eq. (8) and the corresponding calculated
value of Ro.
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Table 4.  Radius of nucleation center, Ro
a

Ro 
(nm)

Einitial 
(MeV)

Based on Eq. (7)
(using all the recoil

energy)
Based on Eq. (6b) Based on Eq. (8)

  0.1
  0.2
  0.4
  0.8
  1.0
  2.0
  4.0
  8.0
10.0
20.0

15.150
19.087
24.048
30.299
32.639
41.122
51.811
65.278
70.318
88.595

26.322
26.345
26.391
26.483
26.529
26.765
27.255
28.322
28.905
32.478

15.150
19.087
24.048
26.483
26.529
26.705
27.255
28.322
28.905
32.478

aNote that for energies above about 0.5 MeV, the recoil track is longer than the nucleation center
diameter, so only a fraction of the recoil energy is available to initiate a single bubble.

5.  CALCULATION OF THRESHOLDS

Now that Ro has been calculated, Eav can be determined from the relationship Eav = HRo
3,

and then the minimum negative pressure for bubble formation can be obtained from Eq. (1).
However, there is a more direct method. 

If we substitute Eav = HRo
3, from Eq. (5), directly into Eq. (1), remembering that

H = (4�/3)!critHca, the result is

(9)P
R

neg

o

thresholda f = 2 σ
.

Such simplicity may seem surprising, but it is a consequence of the basic nucleation
mechanism: a bubble of radius r feels an inward force from surface tension that tends to collapse
it. That force is equivalent to an inward pressure of 21/r, and any outward pressure (either from
vapor inside the bubble or from an external negative pressure) that is greater than 21/r will cause
the bubble to grow, hence Eq. (9).

To calculate the thresholds, for mercury recoils with initial energies in the range
0.1–20 MeV, use Eq. (8) to evaluate Ro, and substitute that value in Eq. (9) to calculate the
threshold.

6.  RESULTS

Figures 3 and 4 show the negative-pressure threshold calculated as a function of the initial
energy of the recoil. The sudden change in the slope, at an initial energy of ~0.5 MeV, represents
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Fig. 3.  Bubble nucleation threshold for initial energies up to 20 MeV.

Fig. 4.  Bubble nucleation threshold for initial energies below 1 MeV.
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the point above which the range of the particle is so long that not all of its initial energy is
deposited in a region small enough to form a single nucleation center. At higher energies, the
threshold falls only slowly, as dE/dx gradually gets larger. In the range 0.5–20 MeV, the
negative-pressure threshold is in the range 307 ± 30 bars. Below 0.5 MeV, it rises rapidly to over
700 bars at 50 keV.

I know of no published data concerning the radioactive or recoil particles expected to be
found in the mercury target of the SNS. However, one can speculate on the outcome of various
physical processes. As stated earlier, the maximum energy a mercury atom can receive from an
incoming proton is 20 MeV, but the negative-pressure waves that might give rise to cavitation are
generated by the reflection of positive-pressure waves created when the proton beam strikes and
heats the target. Therefore, the mercury recoils will see no negative pressure to nucleate bubbles
unless pressure waves continue to reverberate with a high amplitude until the next proton pulse,
15 ms later. This would require a high amplitude to be maintained following 200 or more
reflections. The SNS Project is planning experiments to observe the reverberations, but such a
long period of almost undiminished echoes seems unlikely.

Another possible source of recoils would be neutrons, or other particles, emitted by
activated materials in the target mercury or its container. It would probably be conservative to
assume that the maximum energy of such a particle would be 10 MeV, in which case the
maximum energy it could give to a mercury nucleus, in a head-on elastic collision, would be
~200 keV. Or if the mercury itself were transmuted, without a great change of mass in the
transmutation, the resulting isotope might recoil upon decay through alpha emission. If an alpha
particle were emitted with an energy of, say, 5 MeV, then the maximum recoil energy of a
particle of mass ~200 amu would be ~400 keV. The calculated negative-pressure thresholds for
such events are shown in Table 5.

Table 5.  Recoil energies and calculated threshold

Mercury recoil energy 
(MeV)

Calculated threshold 
(bars)

2.0 270

0.4 370

0.2 470

7.  EXPERIMENTAL DATA

Briggs (1953) measured the cavitation threshold of mercury in Pyrex glass using his spinner
method. Even taking extreme measures to clean the glass tube and to purify and degas the
mercury, the maximum negative pressure sustained was 425 bars at 27(C (much lower than the
150(C expected in the SNS target), and in other circumstances the threshold was more typically
less than 50 bars. Experiments by Taleyarkhan et al. (1998) and Moraga (1999) with mercury
that had not been thoroughly degassed led to cavitation at less than 1 bar of negative pressure.

For comparison, calculations by Taleyarkhan and Kim (1998) of the negative-pressure pulse
following reflection of the initial positive-pressure wave give a value of more than 200 bars in
the bulk mercury and more than 600 bars near the target walls (if there was no significant
cavitation). Experiments are planned to measure the amplitude of successive reflections.
However, the experimental data mentioned in the previous paragraph seem to indicate that in a
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practical mercury target, other mechanisms are likely to lead to a negative-pressure threshold for
cavitation that is smaller (more easily reached) than the theoretical limit imposed by radiation-
induced nucleation.

8.  SUMMARY

One can make simple calculations of the ultimate negative pressure likely to be sustainable
by the mercury of the SNS target. Radiation is likely to set an upper limit of ~400 bars, although
dissolved or entrained gas will likely prevent such high tensile stresses from being reached in a
practical target assembly.



*These values are lower than those that appear in Table 5, which is seemingly similar. The energy listed in Table 5
is the total recoil energy, not all of which is available for bubble formation.
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Appendix A:

DOMINANCE OF KINETIC TERMS

Section 7.3 of West (1998) describes how to determine whether Eq. (1) of the present report
is appropriate. In liquids where the dynamic terms (viscous losses and the kinetic energy given to
the liquid around the rapidly growing bubble) are dominant, the bubble cannot grow fast enough
to preserve the initial energy deposited by the nucleating particle. Instead, that energy is lost
almost immediately by conduction so that the internal energy, and therefore pressure, inside the
bubble soon becomes very small. To continue bubble growth beyond this stage, the negative
pressure alone must be able to overcome the inward forces of surface tension, that is,

(A.1)n e g
o

t h r e s h o l dP
R

a f ≥
2 σ

,

where 1 is the surface tension and Ro the initial radius of the nucleation center. As indicated in
Eq. (3) of this report,

(A.2)
o

av

crit ca

R
E

H
= 3

4

3

π ρ
.

The section referred to above (West, 1998) shows that the distinction between high and low
dynamic-loss cases is determined by comparing the results predicted by Eqs. (44) and (50) of that
report. With a slight change of nomenclature (substituting Eav for Erecoil), Eq. (50) is identical to
Eq. (A.2) above.

Using the TK Solver routines developed for the work reported by West (1998), the results
for mercury are calculated as follows:

Eav 
Pneg (threshold) 

(bars)

(MeV) Eq. (44) Eq. (50)

20 299 101*

2 22,976 218*

0.2 2,230,447 470 

In all cases Eq. (50) is by far the lower value, indicating that Eq. (50) or (A.2) is the
appropriate one to use.
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Appendix B:

PROPERTIES OF MERCURY FOR SNS TARGET
CAVITATION CALCULATIONS

Property Units             Value Notes

Zp
Tamb K

80
423.15

Charge number of recoiling particle
Initial temperature

Data obtained from Yaws database

Mwt
Z

5

rho
5

sigma
Cpliq
eta
kliq
Pcrit

Tcrit

rhocrit

Hca

g/mol

kg/m3

mN/m
J/mol·K
mPa/s
w/m·K
bars
K
kg/m3

Btu/lb

200.59
80

13,270
447.47
27.54
1.165
10.05
1608
1735

3559.7
132.95

Molecular weight
Charge number of medium
Density of liquid
Surface tension
Specific heat
Viscosity
Thermal conductivity
Critical pressure
Critical temperature
Density at critical point
Enthalpy difference, ambient to critical

Data calculated from Yaws data

rho
5

rhocrit

Hca

D
etaeff

kmol/m3

kmol/m3

kJ/mol
m2/s
mPa·s

66.155
17.746
61.99

5.516 × 10–6

19.465

Density of liquid
Density at critical point
Enthalpy difference, ambient to critical
Thermal diffusivity
Effective viscosity, Eq. (34) in
   West (1998)
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