

### MERIT Hg System Final Design Review

# **Hg Target System Controls**

V.B. Graves P.T. Spampinato T.A. Gabriel

MERIT Collaboration Meeting MIT Plasma Science & Fusion Center Oct 5, 2005

> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

## Outline

- Operating environment
- Requirements / constraints
- Power requirements
- Instrumentation
- Control system scheme
- Issues

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



# **CERN Tunnel Plan View**



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



# **MERIT Layout**



#### OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY









OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



#### **Control System Requirements & Constraints**

- No existing power available in tunnel
- Control system mounted on hydraulic pump reservoir
- Operator controls 60m away
- Will require some level of communication with other control systems (solenoid, beam, diagnostics) and/or a supervisory control system





# **Operating Scenario**

|          | Solenoio                   | d **         |                    |                    |                |
|----------|----------------------------|--------------|--------------------|--------------------|----------------|
| Time     | Cryogenics                 | Power        | <b>Target Pump</b> | <b>Proton Beam</b> | Optical        |
| (sec.)   |                            | Supply       | System             |                    | Diagnostic     |
| minus 30 | Magnet full of             | Standby      | Fill Hg supply     | Call for beam      | Off            |
|          | LN <sub>2</sub> @ 80°K     |              | line               |                    |                |
| minus 10 | Purge LN <sub>2</sub> with | Standby      | Standby            | Wait for beam      | Standby        |
| 1000     | gaseous He                 |              |                    |                    |                |
| 0 to 9.5 | Magnet full of             | Start ramp   | Ramp Hg to full    | Wait for beam      | Standby        |
|          | He gas                     | to full      | flow               |                    |                |
|          |                            | current      |                    |                    |                |
| 8 to 9.0 | Magnet full of             | Ramping to   | Steady state Hg    | Wait for beam      | Turn on laser  |
|          | He gas                     | full current | jet                |                    | lighting       |
| 9.5 to   | Magnet full of             | At full      | Steady state Hg    | 24 GeV, 1 MW       | Operate high   |
| 10.5     | He gas                     | current      | jet                |                    | speed camera   |
| 10.5 to  | Magnet full of             | Begin de-    | Shut down          | Standby            | Turn off laser |
| 11.0     | He gas                     | energizing   | syringe pump       |                    | light and      |
|          |                            |              |                    |                    | camera         |
| 11.0 to  | Magnet full of             | De-energize  | Standby            | Standby            | Off            |
| 15.0     | He gas                     | to zero      |                    |                    |                |
| 15.0 to  | Fill magnet with           | Cool down    | Refill syringe     | Standby            | Off            |
| 1800.0*  | LN <sub>2</sub> @ 80°K     | to ~80°K     | cylinder           |                    |                |

\* Assumes a 30-minute dwell period.
\*\* Solenoid power supply is in "Standby" for zero-field operation.

**OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY** 



#### **Power Requirements**

- Hydraulic pump 380/460VAC, 50-60Hz, 60A
- Proportional control valve 24VDC
- Heater foil 120VAC
- Hg vapor monitor 120VAC
- Instruments 24VDC



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



# **Minimum Signal Requirements**

- Trigger (time till pulse)
- Ready signal from Hg system
- Enable signal from supervisory control system
   Also used as abort signal



# **Instrumentation & Sensors**

| Controlled Components            |                                 |                            |                                          |  |  |  |  |
|----------------------------------|---------------------------------|----------------------------|------------------------------------------|--|--|--|--|
| Hydraulic pump                   | Proportional control valve*     | Heater foil                |                                          |  |  |  |  |
| Analog Sensor Inputs             |                                 |                            |                                          |  |  |  |  |
| Hg discharge<br>pressure         | Hg level                        | Hg sump<br>thermocouple    | Secondary<br>containment<br>thermocouple |  |  |  |  |
| Cylinder 1<br>position*          | Cylinder 2<br>position          | Hg vapor 1                 | Hg vapor 2                               |  |  |  |  |
| Hydraulic fluid<br>high pressure | Hydraulic fluid<br>low pressure | Beam window 1<br>pressure* | Beam window 2<br>pressure*               |  |  |  |  |
| Digital Sensor Inputs            |                                 |                            |                                          |  |  |  |  |
| Hydraulic filter<br>dirty switch | Hydraulic low<br>level switch   | Conductivity probe         |                                          |  |  |  |  |

\* Critical for system operation or safety

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY UT-BATTELLE

#### **Proportional Directional Control** Valve

#### Bosch Rexroth 4WREE

- Operating pressure: up to 3000psi (210 bar)
- Nominal flow: 8.45gpm (32 l/min)
- Sensitivity: <= 0.05% (equates to 0.003 m/sec nozzle velocity)
- Supply voltage: +24VDC
- Command signal: ±10VDC







# **Original Position Sensor**

- Temposonics G-series linear position sensor
  - Measured variable: displacement
  - Measuring range: 2-100in
  - Repeatability: 0.001% full stroke
  - Output: voltage or current
  - Update time: <1ms</p>
  - Supply voltage: +24VDC
- Installed in hydraulic cylinder
- Problems: on-board electronics, operates using magnetic field





OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

#### **Current Position Sensor**



#### Celesco CLWG linear potentiometer

- Redundant sensor on cylinder #2
- Aluminum body
- Voltage divider output
  - Variable resistor, no on-board electronics
  - Repeatability < 0.01mm</li>
  - Linearity 0.05%FS for 450mm range (0.225mm)
- Position sensor critical to system control
  - Piston start/stop locations
  - Piston position/velocity ⇒ Hg flow rate ⇒ Jet velocity
  - Electrical noise may be problem

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



# LabView-Based Control System

- Remote control over long distance limited choices
  - Analog I/O modules need to be close to equipment and power supplies
- LabView controller on laptop computer was chosen
  - National Instruments recommends CompactPCI I/O modules
  - Communicates to laptop via EtherNet cable
  - Allows custom operator interface, data logging if required during development
  - Should allow straightforward integration with other control systems
- Control system development to begin late October

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY







#### Procurement

 National Instruments hardware & software procured by Princeton

LabView software already procured

- Laptop computer provided by BNL
- Most instruments specified in Hg delivery system procurement package



#### Conclusions

- Control system scheme chosen
- System development to begin November 2005
   Ready when syringe delivered
- Most instruments provided with Hg delivery system
- Integration with supervisory control system TBD

