

Target concepts for future high power proton beams

A.Fabich CERN AB-ATB, Switzerland

April 2005

2

fact Outline

- Demand for "human made" neutrino beams
 - A neutrino factory
 - A high power proton driver
 - Target station
 - Secondary particle production
- Target concepts
 - Solid targets
 - Liquid targets
 - Jet target
 - Worldwide R&D

CNGS graphite target assembly (2005, D.Grenier et al.)

Neutrino oscillations

Observation: v into another v of different flavour

Results:

NEUTRINOS HAVE MASS MASS STATES ≠FLAVOUR STATES

- Three mixing angles
- Two ∆m² differences
 - 3 masses

6 Parameters:

April 2005

Neutrino parameters to measure

- Measure θ_{13} via P($v_e \rightarrow v_\mu$) with a precision of 10⁻³ or setting a limit to 10⁻⁶
- Determine the sign of Δm_{23}^2
- Discover and measure the CP violation in the leptonic sector

$$\mathsf{P}(\nu_{e} \rightarrow \nu_{\mu}) \neq \mathsf{P}(\overline{\nu_{e}} \rightarrow \overline{\nu}_{\mu})$$

Need of high energy v_e : $\mu^+ \rightarrow e^+ + v_e + \overline{v_{\mu}}$

neutrino beams/experiments

"Human made" neutrino beams provide advantage of

- pure neutrino flavour
- with known parameters (E, intensity, direction, ...)
- Switching the helicity by switching the parental sign
- A stage towards a muon collider ...

Future installation (constructed or considered)

- to look for θ_{13}
 - Look for $v_{\mu} \rightarrow v_{e}$ in v_{μ} beam (CNGS,ICARUS, MINOS)
 - Off-axis beam (JHF-SK, off axis NUMI)
 - Low energy SuperBeam
 - to look for CP/T violation or for θ_{13} (if too small)
 - Beta-beams (combined with SuperBeam)
 - Beta-beam: neutrinos from beta-decay of boosted isotopes
 - Neutrino Factory: high energy $v_e \rightarrow v_\mu$ oscillation

2000-05-16 • Peter Gruber, CERN-PS

v-factory:

 $\begin{array}{ll} p+p \rightarrow \pi^{+}, \ K^{+} & + \dots & 2^{nd} \ generation \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} & 3^{rd} \ generation \\ \mu^{+} \rightarrow e^{+} + \underline{\nu}_{\mu} + \nu_{e} & 4^{th} \ generation \\ \end{array}$ flux of 10²¹ neutrinos/year requested by physics $\rightarrow \ high \ power \ primary \ proton \ beam \ (average \ 4 \ MW) \ required \\ with \ losses \ assumed \ in \ production \ chain \end{array}$

→ new challenge not only for proton driver e.g. BNL/AGS, CERN/SPL esp. for production targets

"Secondary" particle generation

- Produce unstable daughter particles of interest:
 - Neutrons, radio-isotopes, pions, kaons, muons, neutrinos, ...
- with highest flux possible achieve high statistics and/or background suppression
 - Collider luminosity: $\mathcal{L} = N^2 f / A$
 - sometimes (e.g. neutrino factory) the particle flux is relevant only, beam size A is not of high importance
- Primary proton beam strikes target
 - Today typical proton beam power: average 10 to 100 kW
 - Target materials: mainly solids from beryllium to lead

10

Target failure Increasing proton beam

- power without paying attention leads to uncontrolled energy deposition
- Causes excessive heating
- structural failure

Above 20 % of the primary beam power are deposited in the target!

No quotation on purpose

Hot issues for a target

induced by the proton beam

- Thermal management (heat removal)
 - Target melting
 - Target vaporization
- Radiation damage
 - change of material properties
- Thermal shock
 - Beam-induced pressure waves

Numerous applications today:

but proton beam power < 100 kW

- Common materials: Beryllium, carbon, tantalum, …
 - low coefficient of thermal expansion
 - High melting point
 - High production yield
 - **.**...

Studies

- BNL for a 1 MW proton beam (average)
- ISOLDE with a 10 kW -"-
- CNGS with a 700 kW -"-

• • • •

Pion yield optimisation

- fixed proton energy (2.2 GeV)
- as a function of the target material

capture losses not included in figure

Material	π^+ per p.o.t.	π^- per p.o.t.
C	0.30	0.153
Ta	0.183	0.174
Hg	0.185	0.186

S.Gilardoni

The Harp experiment

Hadron production cross section measurement

- CNGS: CERN neutrinos to Gran Sasso, start 2006
- 750 km neutrino beam line
- 0.75 MW proton beam power
- Target: graphite
 - high pion production
 - small α
 - good tensile strength
- 10x rods
 - I=10 cm, d=5 mm
 - Helium cooled

CNGS graphite target assembly (2005, D.Grenier et al.)

 Major concerns for target failure in case of abnormal operation of not centered beam

Carbon an ultimate candidate?

Very good material properties like thermal expansion, but ...

- For Carbon 2 $\lambda_1 = 80$ cm \rightarrow target not point-like
 - difficult to find an efficient horn design
 - cost of the solenoid capture
- Pion time spread too large for subsequent phase rotation
 - Carbon would add > 0.5 nsec

K.T.McDonald

• A Carbon target in vacuum sublimates away in one day at 4MW.

- In an helium atmosphere: sublimation negligible?
- Radiation damage limits lifetime to about 12 weeks

Rotating toroidal target

- Distribute the energy deposition over a larger volume
 - Similar a rotating anode of a X-ray tube

•Tensile strength of many metals is reached with stresses induced by the equivalent of a 1.5 MW proton beam \rightarrow structural failure

/ Target material studies

- Radiation induced change of material properties:
 - CTA
 - Tensile strength
- Studies ongoing at BNL

P.Sievers et al.

- Tantalum Spheres:
- Small static thermal stress:
- Small thermal shock waves:

 \varnothing = 2 mm, ρ = 0.6 x 16.8 \approx 10 g / cm³

Each sphere heated uniformly.

Resonance period of a sphere is small relative to the heating time

- Large Surface / Volume: Heat removed where deposited.
- Radiation/structural damage of spheres, container and <u>windows</u>:
- Lifetime of Target > Horn to be expected ?
- R&D not pursued

23

- **!!!** Beam window:
- Beam induced stresses
- Cavitation induced erosion (pitting)

T.Gabriel et al.

SNS, ESS: high power spallation neutron sources

Contained liquid target

- 1m/s mercury flow
- Liquid immune to stresses
- passive heat removal
- No water cooling

Containment failure

"solved by":surface treatmentBubble injection

	BNL	CERN	
Energy [GeV]	24	2.2	
Proton intensity/pulse	3 10 ¹³	24 10 ¹³	
Rep.rate [Hz]	32 50		
Pulse length [ns]	5	3200	
Focusing element	20 T solenoid	Magnetic horn	

Magnetic volume according to the Ampere law:

Focusing options

Increase secondary acceptance

Magnetic Horn (CERN)

- B=0 T at target
- Focuses only one charge state, which is required for super-beam
- highly restricted space

Solenoid (US)

- B = 20 T at target
- Adiabatic focusing channel
- Two charges collected can be separated by RF

Liquid target with free surface

- jet avoid beam window
- v~20 m/s Replace target at 50 Hz each proton pulse sees new target volume
- Cooling passively by removing liquid

no water-radiolysis

- ??? What is the impact on the jet by
 - 4 MW proton beam
 - 20 T solenoidal field

Proton beam (σ,=σ,=4 mm) on 1.5λ target (r=1 cm) 20 T solenoid (r, -7.5 cm) MAR813(97) 8-Dec

n.

1.0

0.8

0.6

0.4

Οπ + K

30 GeV

16 GeV

8 GeV o_o

l Target properties

- $E_p > 10 \text{ GeV}$: high Z
 - point-like source
- L = 2 nuclear interaction length
- R = 5 mm
- Tilt: 100 (150) mrad
 - Limited by bore

- Advantages
 - High Z
 - Liquid at ambient temperature
 - Highly convenient for R&D
 - Easily available
- Disadvantages
 - Toxic
 - "only" compatible with very few materials
 - Stainless steel, Titanium, EPDM, ...
 - High thermal expansion coefficient

Proton induced shock(s)

- Proton intensity: 3 10¹³⁽¹⁴⁾ p+/pulse
- dE/dx causes "instantaneously" dT of Gaussian shape within pulse duration

pressure gradient accelerates ... dP/dr=-dv/dt

 $v_{dipersal} \sim \alpha \ dE/dm \ 1/cp \ v_{sound}$

v_{dipersal}~50 m/s for dE/dm=100J/g

perp. velocity ~ 5 m/s

Recorded at 4kHz Replay at 20 Hz

BNL AGS Proton beam Hg jet v=2 m/s

BNL AGS Proton beam Hg jet v=2 m/s

37

BNL AGS Proton beam Hg jet v=2 m/s

J.Gallardo et al., PAC01, p.627

induced

particle capture

15 m/s mercury jet injected into 20 T field.

MHD stabilization

Simulation of the mercury jet – proton pulse interaction during 100 microseconds, B = 0

damping of the explosion induced by the proton beam

a)
$$B = 0$$
 b) $B = 2T$ c) $B = 4T$
d) $B = 6T$ e) $B = 10T$

A.Fabich, CERŃ

	ISOLDE	GHMFL	BNL	TT2A	NuFact
p+/pulse	3 10 ¹³		0.4 10 ¹³	2.5 10 ¹³	3 10 ¹³
B [T]		20		15	20
Hg target	static	15 m/s jet (d=4mm)	2 m/s jet	20 m/s/ jet	20 m/s jet (d=10mm)
	DONE	DONE	DONE	2007	DESIGN

- proof-of-principle test proposed at TT2A @ CERN
- Experimental setup: <u>15 T solenoid</u> + Mercury Jet + proton beam
- Completion of the target R&D for final design of the Hg-Jet

Nominal mercury jet target test in TT2A at CERN

- Approved CERN experiment nToF11
- Setup:
 - Proton beam
 - 24 GeV, nominal intensity
 - 15 T solenoid
 - 20 m/s mercury jet
- Collaboration:
 - BNL,ORNL, Princeton University, MIT, RAL, CERN, KEK
- Beam time in spring 2007

- (Mercury) jet target a viable solution as a production target for a 4MW proton beam and beyond!
- Target R&D on target concepts different than jet are alive, but comparable small.
- Synergies of target development for a large variety of applications.