UKNF 12 January 2005

Target Studies

J R J Bennett

RAL

Progress

- 1. RMCS and FGES have been retired from the project.
- 2. Laboratory tests using projectiles will not truly replicate the thermal shock in the target.

So a new plan is needed

The New Plan

- 1. Pulsed ohmic-heating of wires replicates beaminduced shock.
- 2. In-Beam Tests at ISOLDE.
- 3. Calculate the shock. Goran Skoro and Chris Densham using LS-DYNA.
- 4. The VISAR can be made in Laser Division at RAL.
- 5. Calculate the pion yield, beam heating and activity. Stephen Brooks using MARS code.
- 6. Rob Edgecock will take over as the Work Package Manager.

- 7. Work on the TT2A Mercury Jet experiment continues - mainly the cryogenic system design and costing. (Mercury jet in 15 T solenoidal field with 24 GeV proton beam at CERN.)
- 8. Rob Edgecock and JRJB are writing a proposal to PPARC for funding to:
 - design, manufacture, install at CERN and commission the cryogenics.
 - MHD calculations of the behaviour of the mercury jet.
 - take part in the experiment at CERN and the analysis.
 - 9. Pbar results.

Shock Heating of Wires

1. High frequency EM fields only penetrate the surface of conductors.

Skin depth for a plane surface $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ This is the steady state situation.

For a transient we have a slightly different situation.

Transient Conditions

- •Assume an electric field E is instantaneously applied across a conducting wire.
- Apply Maxwell's equations.
- •This produces a diffusion equation:

$$\frac{\partial \underline{j}}{\partial t} = \frac{1}{\mu_0 \sigma} \left(\frac{\partial^2 \underline{j}_z}{\partial r^2} + \frac{1}{r} \frac{\partial \underline{j}_z}{\partial r} \right)$$

- In cylindrical coordinates, where j is the current density.
- The solution is: $j_z = j_{z0} \left[1 \frac{2}{a} \sum_{n=1}^{\infty} e^{-\kappa \alpha_n^2 t} \frac{J_0(r\alpha_n)}{\alpha_n J_1(a\alpha_n)} \right]$

Doing the Test

The ISIS Extraction Kicker Pulsed Power Supply

Rise time: ~100 ns Flat Top: ~300 ns Voltage peak: ~40 kV Current Peak: ~8 kV

Repetition rate up to 50 Hz. There is a spare available for use.

The Velocity of the Shock Wave

Shock travels at the Speed of Sound.

$$s = \sqrt{\frac{E}{\rho}} = 3.3 \,\mu\mathrm{m \, ns^{-1}}$$

- It takes 60 ns for the shock wave to cross to the centre of the wire.
- Can only use small diameter wires of up to ~0.4 mm.
- "Choose a better material"

Different Materials

- Graphite has an electrical resistivity [1] at room temperature of 1356 μ ohm cm would be very suitable.
- •Sound velocity ~same as for Ta.
- The rod could be 2 mm diameter and the average current in the rod would reach 94% of its long term value in only 100 ns.
- Need more current for the same energy dissipation as Tantalum.

[1] Values for carbon are taken from "Goodfellow Cambridge Ltd". Graphite has very variable properties depending on the grade etc.

Schematic diagram of the test chamber and heater oven.

Pbar Target Tests

Pbar target assembly presently in use

Tantalum target test summary (1) Pat Hurh

- Goal was to create enough target damage to reduce pbar/π⁻ yield
 - - Target rotation was stopped so that beam pulses were accumulated in the same area
 - After accumulating 100 beam pulses, energy deposition was increased by a factor of 2 and process repeated
 - Target rotated 10° between data points

Tantalum target test summary (2) Pat Hurh, FNAL

- Goal was to create enough target damage to reduce pbar/π⁻ yield
 - Target did not show appreciable pbar/π- yield reduction up to maximum energy deposition
 - 1,100 pulses with proton intensities of 5.8-6.5E12
 - Energy deposition estimated at 2,300 J/g (38,300 J/cc)
 - Tantalum target had 8% lower pbar/ π⁻ yield as compared with nickel (model predicted a few percent higher)

TT2A Mercury Jet Test Cryogenic System

- 1. RAL are costing the cryogenic system for the mercury jet test.
- 2. Rob Edgecock and JRJB are writing a proposal to PPARC for funding to:
 - design, manufacture, install at CERN and commission the cryogenics.
 - MHD calculations of the behaviour of the mercury jet
 - take part in the experiment at CERN and the analysis

