Superconducting Magnet R&D for COMET

Makoto Yoshida (KEK)

NuFact11 1-6 Aug, 2011

Issues in Superconducting Magnet R&D

- Solenoid capture scheme is proposed in Neutrino Factory and intense muon (μ⁻) source for mu-e conversion experiments, COMET at J-PARC and Mu2e at FNAL.
- Higher magnetic field is needed for better collection efficiency of pions.
- Superconducting magnets will provide 5T on the target in COMET/Mu2e, 20T in NF
- Magnet components are irradiated by severe radiation from the embedded target.
- Radiation issues should be considered in a magnet design.
- Investigation of irradiation effects on magnet materials has been initiated in 2010 with reactor neutrons

COMET@J-PARC

- Searching for muonelectron conversion
 J-PARC E21
- 8GeVx7microA pulse protons from MR
- Aims at 10¹⁸ negative muons for 10²¹ protons
- Superconducting solenoid magnets from end to end;
 - □ Pion capture
 - Muon Transfer
 - Spectrometer
 - Detector

Al-stabilized superconductor

- NbTi Rutherford cable with aluminum stabilizer
 - Less nuclear heating than with Cu stabilized cable
- Doped, cold-worked pure aluminum
 - Good residual resistance
 - RRR~500 (ρ₀=0.05nΩm@4K)
 - Good yield strength
 - 85MPa@4K

COMET design value

- Size: 4.7x15mm
- Offset yield point of AI@4K: >85MPa
- RRR@0T:>500
- Al/Cu/SC: 7.3/0.9/1
- 14 SC strands: 1.15mm dia.

Neutron fluence for experimental life-time (~10²¹ p) approaches a level of ITER magnets (ITER requirement: <10²² n/m²)

What's the effects on magnet properties?

Radiation hard magnet material

Insulator, resin □ BT-resin, Cyanate ester Polyimide/Glass composite Thermal insulator □ Al-coated polyimide film; Less outgas Support structure □GFRP, Titanium rod Superconductor □ NbTi, Nb3Sn would be OK up to 10²² n/m²

Problematic components

Stabilizer

- Aluminum alloy
- Copper
- Thermal conductor
 - Pure aluminum
 - Copper
 - □ Aluminum alloy
- Thermo sensor
 - $\hfill\square$ No experience at $10^{21}\,n/m^2$

Figure 3 Error on temperature measurement on some sensors during irradiation (Tbath=1.8 K)

LHC Project Report 209

- Fast-neutron irradiation induces defects in metal.
- Defects could be accumulated at Low temperature,
- and causes degradation of electrical/thermal conductivity

- Problems in
 - Quench protection, Stability
 - Cooling

Table 3 Irradiation induced resistivity, ρ_i , defect concentration, C_i , and ratio of induced to residual resistivity, ρ_i/ρ_0 .

Irradiation effects on AI, Cu in literature

pure AI (RRR=2000)

- □ Fast neutron $2x10^{22}$ n/m² Induces $\rho_i=3.8n\Omega.m[1]$
- Perfect recovery by annealing at RT
- pure Cu
 - $\Box \rho_i = 1.2 n \Omega.m [1]$
 - 10% damage remains after annealing at RT

Element	Induced resistivity, ρ _i (nΩ · cm)	Induced concentration ^{a)} (10 ⁻⁴ a.f.)	$\rho_{\rm i}/\rho_{\rm o}$
Aluminum	382.3	5.6	275
Nickel	363.9	5.6	31
Соррег	116.2	4.8	142
Silver	87.9	3.6	54
Gold	102.7	4.0	40
Platinum	264.6	3.6	48
Iron	1137.2	9.1	21
Molybdenum	593.3	6.0	142
Cobalt	794.6	8.0	9

Vol. 49 (1973) p161

Indirect Cooling of Capture Solenoid

- Possible problem with Helium bath cooling of Capture Solenoid, due to Tritium production by ³He(n,p)³H
- Propose conduction cooling to reduce irradiation of LHe
- Remove nuclear heating (max. 20W) by pure aluminum strip in between coil layers
- Thermal conduction can be degraded by neutron irradiation
- Temperature gradient in coil
 - □ 0.5mm thick, λ=4000W/m-K (RRR=2000) → ΔT=0.12K
 - □ If irradiation makes λ =400W/m-K → Δ T=1.2K
- Taking into account margin for irradiation damage, thick aluminum will be used
 - \Box 2mm, λ =400W/m-K $\rightarrow \Delta$ T=0.3K

Irradiation test with reactor neutron

- Fast neutrons can degrade electrical/thermal conduction of AI, Cu
- Cold-worked Al-stabilizer and CERNOX sensor was irradiated by reactor neutrons
- Irradiation and measurement must be performed in low temperature to reproduce magnet operation situation

Low Temperature Irradiation Facility

- Kyoto Univ. Research **Reactor Institute**
- 5MW max. thermal power
- Cryostat close to reactor core
- Sample cool down by He gas loop
 - 10K 20K
- Fast neutron flux >0.1MeV) 1.4x10¹⁵ n/m²/s@1MW

Cooling Water

Reactor Core

Sample

KUR-TR287 (1987)

- [2] M. Okada et al., NIM A463 (2001) pp213-219 He-gas He-gas Feed-line Return-line SUS Return Pipe Water Shield Concrete Shield Reactor Walk Al/SUS Joint rradiation Exposure Ho Floor Sample Dropping Port Vacuum Lead-wire Liq. He Gate Valve Lig. N. Water Cannal a: Fast Neutron b: Thermal Neutron 10¹³ Neutron Flux (n/cm²sec) 10¹² 10¹¹ 10¹⁰ 100 200 300 400 500 600 Distance (mm)
 - Fig. 7. Neutron flux distribution as a function of distance from top of sample chamber, (a) fast-neutron and (b) thermal neutron.

Irradiation sample

- Aluminum stabilizer sample from the superconductor by wire electrical discharge machining in KEK
 - □ Keep defects by cold-work
- Size: 1mmx1mmx70mm
- Voltage taps with 45mm spacing
- 4 wire resistance measurement by nano-voltmeter
- CERNOX CX-1050-SD close to sample temperature (also irradiated)

Irradiation sample

- 5N pure aluminum + Cu, Mg with 10 % cold work
- 1.35m Ω @RT, 3µ Ω @10K

Result

- Fast neutron exposure at 12K-15K
- Resistance was measured in situ.
- Resistance increased in proportional to neutron fluence in the range of 10¹⁹-10²⁰ n/m²
 - □ No threshold at low neutron fluence
- Observed ρ_i = 0.056 nΩ.m for 2.3x10²⁰ n/m² (>0.1MeV)
 - Good agreement with pure aluminum results (cf. [1])
- In COMET life time, resistivity of stabilizer will increase by a factor of 4 for neutron fluence of 6x10²⁰ n/m² →Seasonal warmup would be necessary

M. Yoshida et al., ICMC2011

Recovery by annealing at RT

Temperature drift due to CERNOX sensor degradation?

Summary

- Solenoid capture scheme is employed in NF/MC, mu-e conversion experiments
- Conceptual design of coil support, cryostat and cryogenics was carried out for COMET
- Radiation issues are most important for the feasibility
 - □ Indirect cooling
 - Radiation hard organic materials
 - □ Irradiation effects on electrical and thermal properties
- Active R&D on irradiation effect is underway
 - □ First tests successfully done in 2010 Nov.-2011 Feb.
 - Degradation of electric resistivity of AI-CuMg was observed from ~10²⁰ n/m².
 - □ Full recovery by thermal cycle to room temperature was also confirmed.
 - Will investigate different additives, copper, pure aluminum for thermal conduction.