Horn and Solenoid Options in Neutrino Factory

M. Yoshida, Osaka Univ.

NuFact08, Valencia

-- A brief review of pion capture scheme in NuFact, SuperBeam and mu-e conversion

June 30th, 2008

Mission of pion capture system

In neutrino factory

- use accelerated muons
- need muons in small radius and small divergence for accelerating
- □ utilize pions less than 1GeV
 - muons around 0.2 GeV/c for cooling
- In SuperBeam
 - use forward-focused pions
 - point to parallel
 - need pions with small divergence to achieve neutrinos at long distance
 - utilize higher energy pions
 - Off-axis configuration provides narrow band neutrino beam
- In mu-e conversion experiment
 - use stopped muons with negative charge
 - need muons less than 0.1 GeV/c
 - utilize negative pions around 0.1 GeV/c
 - prefer to avoid high energy pions for less background

8GeV, Graphite R=1cm, 5T-Field

Horn in K2K

- 250 kA in 2.5 msec, 2.2 sec cycle
- Aluminum alloy conductor
- Thermal load
 - 14.4 kJ/pulse (Joule heat 12 kJ/pulse) on 1st horn
- Successful operation over 1 year (>10⁷ pulses)

Solenoid in mu-e conversion exp.

- collect backward soft pions
- 5T at solid target
- Proton beam dump located forward
- Solenoid for NF could be used with low energy proton beam.

Tracks in Solenoid

 Backward pions collected

6T→1T in
2.5m

 50 % of pions decay at 5 meter

Solenoid in Neutrino Factory

20T at target, bore = 15 cm

 $Const. = p_t \times r \propto p_t^2 / B \propto Br^2$

- $P_{max}^{t}=0.3BR/2$
- matching to decay solenoid with 1.75T, bore = 60 cm
- tapered in 6 meter

- 50 Hz
- pulsed current of 300kA (internal horn), 600kA (external horn)
- inner bore = 8 cm

Yield estimate

Table 8. Pion and muon production estimates in different cases. ISS report

Case	Reference	Program	$E_{\rm p}$	p Range	μ/π	μ/π
			(GeV)	(GeV/c		per GeV
FFAG Solenoid	[31]	MARS	50		1.2	0.024
FFAG Solenoid	[31] ^{a)}	MARS	50	0-1000	2.0	0.040
CERN Solenoid	[32]	FLUKA	2.2	50-800	0.18	0.082
CERN 300kA Horn (?) [34]	MARS	2.2	50-800		0.010
CERN 400kA Horn (?) [34]	MARS	2.2	50-800		0.014
CERN Solenoid (?)	[34]	MARS	2.2	50-800		0.017
CERN Solenoid	[34]	MARS	16	50-800		0.025
Study 2a	[21, 41]	MARS	25	0-1000	0.8	0.033

CERN NF note 42

Horn	$\pi^+/\text{POT/GeV}$	
300 kA	0.021	no material absorption
after 1 m	0.014	
300 kA	0.016	with material absorption
after 1 m	0.010	
400 kA	0.020	with material absorption
after 1 m	0.014	

Thinner conductor is better \rightarrow strength?

Proton beam dump

- No way to extract protons off solenoid
- All the beam energy should be dumped in Solenoid
- Circulated mercury pool, provided from jet target
- Radiation in solenoid should be an issue

Radiation dose

- 70% of beam power is deposited in target cell
- 40kW in Coaxial shield around target
 - □ peak ~ 10 W/g → 10¹¹ Gy/yr
- 589kW in Surrounding Shield

Lifetime

Solenoid

- □ DC operation
- □ Radiation dose on superconducting coil
 - should be < 100MGy</p>
 - insert heavy material shield into solenoid bore

Horn

- vibration by pulsed current
 - 10⁹ pulses/yr at 50 Hz
 - MiniBOONE horn: 170 kA, 5 Hz for 8 GeV
 - T2K horn: 320 kA, <0.6Hz, for 30-50GeV
- Radiation
 - No shield around target

US study-II

Component	Radius	Dose/yr	Max allowed Dose	1 MW Life	4 MW life
	(cm)	$(Grays/2 \times 10^7 s)$	(Grays)	(years)	(years)
Inner shielding	7.5	2×10^{11}	10^{12}	5	1.25
Hg containment	18	2×10^9	10^{11}	50	12
Hollow conductor	18	1×10^9	10^{11}	100	25
Superconducting	65	$6 imes 10^6$	10^{8}	16	4
coil					

Possible staged approach

- Upgrade scenario from Super Beam to Neutrino Factory
 - Horn + DecayVolume
 - low freqency
 - off axis
 - □ Horn + DecaySolenoid
 - Low frequency
 - Solenoid + DecayVolume
 - High frequency
 - on axis
 - Solenoid + DecaySolenoid
 - High frequency
- Upgrade scenario from muon exp. to Neutrino Factory
 - Solenoid + DecaySolenoid (+bent solenoid)
 - backward capture
 - momentum selection
 - Low energy + SolidTarget
 - Solenoid + DecaySolenoid
 - forward
 - High energy + MercuryJet

Superconducting Coil

- COMET case
 - □ 5T
 - 1m bore
 - 10W (peak: 0.02W/kg)
 - 0.4 MGy/yr for 0.1MW beam
 - Detector thin solenoid technique
 - Indirect cooling
 - □ Al-stabilized cable (NbTi)
 - Well-established technology
 - ATLAS, BESS, CMS, …
 - 6cm thick
 - 80A/mm2 (566A/mm2 in NbTi)
 - 1ton coil mass
 - □ 12MJ

Superconducting Coil

- US Study-II case
 - □ 14T
 - 1.3 m bore
 - □ ~0.3W/kg
 - □ 3MGy/10⁷s for 1MW beam
 - □ Fusion reactor technique
 - Direct cooling
 - Cable in Conduit
 - 64cm thick
 - 20A/mm2 (234A/mm2)
- R&D
 - Radiation
 - insulation with organic material up to 10 MGy
 - change Jc, resistivity

Summary

- Solenoid option is straightforward to collect soft pions and then obtain muons in decay solenoid
 R&D on radiation damage of insulator up to 10 MGy
- Horn can capture, focus pions to parallel
 - Need to match to decay solenoid in Neutrino Factory scheme to obtain muons
 - \Box Need to overcome ~10⁹ pulses/yr at 50 Hz
- Beam dump and radiation dose in target station is an issue
 - Maintenance scenario