Pion capture and transport system for PRISM

M. Yoshida Osaka Univ.

2005/8/28 NuFACT06 at UCI

PRISM/PRIME project

Phase Rotated Intense Slow Muon source
Collect 68MeV/c μ⁻

Concepts of pion capture/transport system for PRISM

- Capture low-energy pions produced in Graphite target with 6T solenoid field
 - Low-Z material
 - to avoid absorption in the target
 - Collect backward pions from the target
 - Direction of emitted low energy pions is almost isotropic
 - helps to reduce radiation heating on cold mass (avoid high energy hadrons)
 - Tilt target by 10 deg. to implement proton beam pipe
 - Energy deposit on superconducting coil of capture solenoid < 100W
 - Al-stabilized SC coil to reduce cold mass
- Transport pions+muons in long 2T solenoid channel
 - Bent solenoid channel
 - Target should be off-site from experimental area
 - Reduce background by wiping out higher energy particles
- The first trial of conceptual design has been done.

Heat load estimation MARS Simulation

- Al-stabilized superconducting Coil
 - 71%Al + 11%NbTi + 14%Cu + 4%G10-tape
 - density 3.1 g/cm³

Heat load on coil

- •thickness of coil = $12cm \rightarrow 17 \text{ A/mm}^2$
- •target length = 60cm

Spatial distribution of deposit energy

 π^-,μ^- distributions @3m

• 0.058 $\pi^-+\mu^-/POT$ @3-meter downstream traget

Transport solenoid channel

- Transport pions and muons in 2T solenoid
 - Bent towards experimental area
 - put radiation shield along proton beam line

Parameters of transport solenoid

arc radius : 4000 mm bend angle : 90 deg. Bs : 2 T By : 0.05 T

coil inner raduis : 350 mm (inner wall : 50mm) coil thickness : 50.0 mm coil length : 629.0 mm current : 36.5 A/mm^2 step angle : 10 deg.

Transport loss in bent solenoid

Summary

- Conceptual design of pion capture solenoid and transport bent solenoid has been performed for PRISM
- Heat load on coils of capture solenoid can be less than 100W as 40 GeV proton beam injected, assuming 0.6MW beam power.
- Design works for the solenoid magnets are being started in collaboration with KEK
- To improve pion yield
 - Reduce beam spot size on target
 - Field gradient around the target
 - acceptance would increase by mirroring forward pions
- To fit to FFAG acceptance (H: 40π mm-rad, V:6.5 π mm-rad)
 - optimize field profile in the capture system to reduce muon emittance. (keep higher field?)

Horizontal position/direction distribution at exit of transport solenoid

