The dynamics of mercury flow in a curved pipe

Yan Zhan Foluso Ladeinde 11-16-2010

Outline

- Motivation
- Objective
- Previous work
- Scheme of the problem
- Pipe curvature effect
- Laminar flow in the mercury supply pipe
- Conclusion

Motivation

- Liquid <u>mercury</u> as a potential high-Z target for Moun Collider Accelerator Project.
- Target delivery systems involves pipe curvature, axiallydependent radius, nozzle diameter and nozzle length etc.
- Proper nozzle design to achieve a less turbulent jet at the nozzle outlet.

Outline

- Motivation
- Objective
- Previous work
- Scheme of the problem
- Pipe curvature effect
- Laminar flow in the mercury supply pipe
- Conclusion

Objective

- Study the dynamics of mercury flow in the target delivery system
- Obtain a basic physical understanding of this internal flow problem for achieving a proper nozzle design
- Start with laminar mercury flow in curved pipe first

Outline

- Motivation
- Objective
- Previous work
- Scheme of the problem
- Pipe curvature effect
- Laminar flow in the mercury supply pipe
- Conclusion

- Equations applied to pipe of arbitrary curvature (1)

Continuity equation

$$\frac{R}{R+r\sin\theta}\frac{\partial u_z}{\partial z} + \frac{\partial u_r}{\partial r} + \frac{u_r}{r} + \frac{\sin\theta}{R+r\sin\theta}u_r + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{\cos\theta}{R+r\sin\theta}u_\theta = 0$$

- Equations applied to pipe of arbitrary curvature (2)

z-momentum equation

$$\frac{\partial u_{z}}{\partial t} + \frac{R}{R + r\sin\theta} u_{z} \frac{\partial u_{z}}{\partial z} + u_{r} \frac{\partial u_{z}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta} + \frac{\sin\theta}{R + r\sin\theta} u_{r} u_{z} + \frac{\cos\theta}{R + r\sin\theta} u_{\theta} u_{z} = -\frac{1}{P} \frac{R}{R - r\sin\theta} \frac{\partial P}{\partial z}$$
$$-v[(\frac{1}{r} + \frac{\partial}{\partial r})(\frac{\partial u_{z}}{\partial r} + \frac{\sin\theta}{R + r\sin\theta} u_{z}) + \frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}} + \frac{1}{r} \frac{\partial}{\partial r} (\frac{\cos\theta}{R + r\sin\theta} u_{z}) - (\frac{1}{r} + \frac{\partial}{\partial r}) \frac{R}{R + r\sin\theta} \frac{\partial u_{r}}{\partial z}$$
$$-\frac{1}{r} \frac{\partial}{\partial \theta} (\frac{R}{R + r\sin\theta} \frac{\partial u_{\theta}}{\partial z})] - v \frac{\sin\theta u_{r} + \cos\theta u_{\theta} - r\sin\theta(\partial u_{z}/\partial z)}{(R + r\sin\theta)^{3}} R \frac{dR}{dz}$$

r-momentum equation

$$\begin{aligned} \frac{\partial u_r}{\partial t} + \frac{R}{R+r\sin\theta} u_z \frac{\partial u_r}{\partial z} + u_r \frac{\partial u_r}{\partial r} + \frac{1}{r} u_\theta \frac{\partial u_r}{\partial \theta} - \frac{u_\theta^2}{r} - \frac{\sin\theta}{R+r\sin\theta} u_z^2 &= -\frac{1}{p} \frac{\partial F}{\partial r} \\ + \nu [(\frac{1}{r} \frac{\partial}{\partial \theta} + \frac{\cos\theta}{R+r\sin\theta})(\frac{\partial u_\theta}{\partial r} + \frac{u_\theta}{r} - \frac{1}{r} \frac{\partial u_r}{\partial \theta}) - \frac{R^2}{(R+r\sin\theta)^2} \frac{\partial^2 u_r}{\partial z^2} \\ + \frac{R}{R+r\sin\theta} (\frac{\partial^2 u_z}{\partial z\partial r} + \frac{\sin\theta}{R+r\sin\theta} \frac{\partial u_z}{\partial z})] + \nu \frac{\sin\theta u_z + r\sin\theta(\partial u_r/\partial z)}{(R+r\sin\theta)^3} R \frac{dR}{dz} \end{aligned}$$

 θ -momentum equation

$$\frac{\partial u_{\theta}}{\partial t} + \frac{R}{R + r\sin\theta} u_{z} \frac{\partial u_{\theta}}{\partial z} + u_{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{r}u_{\theta}}{r} - \frac{u_{z}^{2}\cos\theta}{R + r\sin\theta} = -\frac{1}{p} \frac{1}{r} \frac{\partial P}{\partial \theta} + \nu [\frac{R^{2}}{(R - r\sin\theta)^{2}} \frac{\partial^{2}u_{\theta}}{\partial z^{2}} - \frac{1}{(R + r\sin\theta)^{2}} \frac{\partial^{2}u_{z}}{\partial z} + (\frac{\partial}{\partial r} + \frac{\sin\theta}{R + r\sin\theta})(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} - \frac{1}{r} \frac{\partial u_{r}}{\partial \theta})] + \nu \frac{r\sin\theta(\partial u_{\theta}/\partial z) + \cos\theta u_{z}}{(R - r\sin\theta)^{3}} R \frac{dR}{dz}$$

- Analytic solution for fully developed flow (1)

To get the Analytical solutions, assumptions are needed as follows:

- a. Isothermal newtonian laminar flow
- b. Incompressible (dose not depend on the pressure)
- c. Fully developed (d()/dz=0, , except P ; d()/dt=0)
- d. Constant small curvature (dR/dz=0, $a/R \ll 1$)

— Analytic solution for fully developed flow (1)

• W.R.Dean's solution*

$$u_{r} / u_{0} = na \sin \theta (1 - r'^{2})^{2} (4 - r'^{2}) / 288 R$$

$$u_{\theta} / u_{0} = na \cos \theta (1 - r'^{2}) (4 - 23 r'^{2} + 7 r'^{4}) / 288 R$$

$$u_{z} / u_{0} = (1 - r'^{2}) [1 - \frac{3r \sin \theta}{4R} + \frac{n^{2} r \sin \theta}{11520 R} (19 - 21 r'^{2} + 9 r'^{4} - r'^{6})]$$

Where
$$u_0 = Aa^2$$
, $n = Aa^3 / v$, $r' = r / a$,

A is a constant referring to the pressure gradient. Further the stream function in the pipe cross - section is $\sec \theta = kr'(1 - r'^2)^2(1 - r'^2/4)$

Where k is an arbitray constant.

* W.R. Dean, Note on the motion of fluid in a curved pipe, Imperial College of Science, 1927

Outline

- Motivation
- Objective
- Previous work
- Scheme of the problem
- Pipe curvature effect
 - Straight pipe
 - Curved pipes (δ=0.5;δ=0.013)
 - Comparisions
- Laminar flow in the mercury supply pipe
- Conclusion

Pipe curvature effect - Straight pipe (1)

Reynolds number	1000	
Pipe diameter	1.127 mm	
Pipe length	150a	
Inlet condition	Uniform inlet velocity 0.1m/s and static pressure of 18.5bar	
Mesh1 ($N_z \times N_r \times N_{\theta}$)	Axial direction Radial direction Circumferential direction Total	500 (uniform) 48 (Δ=0.01) 24 576000
Mesh2 ($N_z \times N_r \times N_{\theta}$)	Axial direction Radial direction Circumferential direction Total	1000 (uniform) 56 (Δ=0.005) 24 1344000

Pipe curvature effect - Straight pipe (2)

Fig.1 Mesh comparison for the axial velocity along the center line

Pipe curvature effect - Straight pipe (3)

Fig.2 Axial velocity profile comparison for different mesh

Reynolds number	1000	
Pipe diameter	1.127 mm	
Pipe Length	20 diameter before bend and 60 diameter after bend	
Inlet condition	Fully developed velocity profile and static pressure of 18.5bar	
Mesh for Curvature1 (δ1=0.5)	Axial direction Radial direction Circumferential direction Total	586 56 (Δ=0.01) 24 787584
Mesh for Curvature2 (δ2=0.013)	Axial direction Radial direction Circumferential direction Total	1560 56 (Δ=0.005) 24 2096640

Pipe curvature effect -Curved pipe (2)

Fig.3 Numerical results for pipe of curvature of 0.5 at the inlet part

Pipe curvature effect -Curved pipe (3)

Fig.4 Numerical results for pipe of curvature of 0.5 at the bend part

Pipe curvature effect - Curved pipe (4)

Fig.5 Numerical results for pipe of curvature of 0.5 after the bend part

Pipe curvature effect - Curved pipe (5)

Fig.6 Numerical results for pipe of curvature of 0.5 at the outlet part

Pipe curvature effect - Curved pipe (6)

Fig.7 Numerical results for pipe of curvature of 0.013 at the inlet part

Pipe curvature effect -Curved pipe (7)

Fig.8 Numerical results for pipe of curvature of 0.013 at the bend part

Pipe curvature effect -Curved pipe (8)

Fig.9 Numerical results for pipe of curvature of 0.013 after the bend part

Pipe curvature effect - Curved pipe (9)

Fig.10 Numerical results for pipe of curvature of 0.013 at the outlet part

Pipe curvature effect -Comparison

Fig.11 Axial velocity profile compared at different position s of these two pipes

Outline

- Motivation
- Objective
- Previous work
- Scheme of the problem
- Pipe curvature effect
- Laminar flow in the mercury supply pipe
- Conclusion

2

Ε

Reynolds number	1000	
Pipe diameter	1.127 mm	
Curvature radius	1.165a	
Inlet condition	Fully developed velocity profile	(0.1m/s) and static pressure of 18.5bar
Mesh (N _z ×N _r ×N _θ)	Axial directionZone A30Zone B30Zone C50Zone D40Zone E18Zone F40Zone G50Radial directionZone 124Zone 216 (Δ =0.005a)Circumferential directionTotal	258 56 24 346752

Outline

- Motivation
- Objective
- Previous work
- Scheme of the problem
- Pipe curvature effect
- Laminar flow in the mercury supply pipe
- Conclusion

Simple conclusions

- Larger curvature pipe affects further upstream and downstream.
- Four vortices show in the large curvature pipe.