

Wir schaffen Wissen – heute für morgen

MEGAPIE – unexpected behaviors and findings during operation and dismantling

Michael Wohlmuther, Werner Wagner on behalf of the MEGAPIE team @PSI and MEGAPIE project Paul Scherrer Institut, Switzerland PAUL SCHERRER INSTITUT

The Paul Scherrer Institut

PSI-Ost

SINQ

Proton accelerator Facility at PSI

- 590 MeV / 51 MHz
- 2.2 mA (1.3 MW)

PSI-West

MEGAPIE target features

target head

central flow guide tube

> safety shroud ~

beam window with leak detector

MEGAPIE Target Operation: full history

 Operation "smoothly":
 System behaviour, e.g. temperatures and –transients as expected

Operation

PAUL SCHERRER INSTITUT

- EMPs without indication for degradation
- Measured neutron flux
 increase of roughly ~80 % to
 Target 6 (operated before
 MEGAPIE)

ISO

	SINQ 2005	Err. (%)	MEGAPIE 2006	Err. (%)	ratio
ICON	3.8E+8	~5	6.89E+8	~5	1.81
NEUTRA	2.6E+7	~5	4.80E+7	~5	1.85
EIGER	6.5E+8	~5	1.04E+9	~5	1.61
NAA	5.8E+12	~5	1.04E+13	~5	1.79

Ancillary systems: lessons learnt

System integration in SINQ (Jan.– July 2006)

Main ancillary systems in Target Head Enclosure Chamber (TKE)

Cover gas and insulating gas systems: CGS & IGS

CGS schematic layout

handling of radioactive gases: stringent requirements

- leak tightness
- second containment
- shielding
- operation procedures

in practice: complex and expensive

decay tank box in TKE

Taking gas samples in the TKE

淜

ANSALDO

BOOHB .

500

,small box'

Cover gas & Insulating Gas Pressures during Irradiation

IGS: insulation gas volume

Problem:

continuous pressure increase by ~5 mbar/h ..slightly *contaminated* by (radioactive) covergas

decay period and gas sampling required before venting

Remedial actions:

installation of 180 I decay vessels in cooling plant

regular (weekly) venting into the exaust system

Target dismantling, cutting and packing

Target transfer from PSI to ZWILAG (July 6th, 2009)

Hotcell of ZWILAG

,Cold tests' for target dismantling

Saw

Suction system

spacers for height

adjustment

Hot cell of ZWILAG, prepared for receiving MEGAPIE

The hot cell of ZWILAG had been fully equipped with the saw, a special suction system and all tools needed for the dismantling

Lifting the target into the Hot Cell (HC)

- ≻TC1 docked to HC from below
- The MEGAPIE target was lifted by the crane of the hot cell
- First visual inspection by rotating the target: No special findings; slight stain in high neutron flux region.
- Next step: The Lower Target Enclosure (Aluminum Safety shroud, LTE) was unscrewed.

Next step: Unscrewing and removing LTE

unscrewed LTE

Leak Detector

- First visual inspection of the Lower Liquid Metal Container (LLMC, T91 steel).
- Black smut was deposited on the leak detector (which partly fell off when the target was moved).
- > The sides of the LLMC were covered with dark debris.
- black flakes inside the safety hull calotte, and a metallic shining piece of material

- > 10 slices (H01-H10) were foreseen to extract sample material for the PIE of MEGAPIE
- ...the others to be packed and conditioned for storage and disposal
- The cutting started at the beam entrance window and was continued upwards (LLMC)

The first cut of the LLMC, July 15th 2009

The first cut removed the **Beam Entrance Window**

Samples - cutting the lower liquid metal container

- Each piece cut from the target was held in a special steel basket, which could be moved with a special lifting devices.
- After each cut the piece was cleaned using a vacuum cleaner and subsequently lifted to an interim parking position using the power manipulator of ZWILAG hot cell.
- The cutting of the LLMC could be done with a single saw blade. No degradation was observed.

H03

Samples – Cutting the upper part

H06

H09

> When cutting the sample piece H05 some remains of oil from the heat exchanger was found in one of the THX pins

➤For the upper cuts the saw blade had to be changed twice (by hands-on operation in a separate service cell)

Changing the saw blade in a separate service cell

Packing the sample slices

The sample slices were stacked in a barrel (B10)

B10 was subsequently placed in a special transport container (TC3).

TC3 was tested for tightness and was temporarily stored in ZWILAG, until the transfer to the Hot Laboratory of PSI could be done

> transfer to PSI done:April 5, 2011

B10

TC3

PAUL SCHERRER INSTITUT

Waste conditioning

All waste pieces were packed into the socalled "primary containers", made from steel.

➤The whole hot cell was cleaned with a vacuum cleaner. The collected flakes were as well put into one of the "primary containers".

≻The containers were closed and welded.

...and placed into a reinforced standard PSIwaste container – TC2.

➢This container has been prepared for disposal in a final repository by filling it with concrete.

TC2

Welding device

PSI hotlab activities for sample extraction and PIE

The sample extraction process in the HL will consist of 8 major steps:

- 1. Visual inspection of all sample pieces delivered from ZWILAG
- 2. Gamma mapping of the tip of the AIMg3 safety shroud
- 3. Thickness measurements of the beam entrance window
- 4. LBE sample taking
- 5. Melting out the LBE from structural materials
- 6. Raw-Cutting of the PIE structural material samples
- 7. Cleaning of the samples from LBE (where needed)
- 8. Fine-Cutting of the PIE structural material samples

All steps need to be tested with representative non-active materials

Gamma mapping of the tip of the AIMg3 safety shroud

- To melt out the LBE from the structural materials, a special oven has been designed
- The pieces to be melted are placed in the upper part
- The lower part of the oven serves as a collector of the LBE
- The oven was tested for proper functioning
- >Test to melt LBE (dummy-)samples were successfully done

Cutting tests of the structural material

- > 1:1 mock-ups of all sample types have been manufactured with original materials and dimensions.
- > Groups of samples will first be 'raw-cut' using a diamond disk
- ..and 'fine-cut' by diamond blade saw for samples with LBE (Type 1)
- ...or wire-cut with an EDM machine for tensile and TEM samples (not allowing LBE contamination)

Megapie PIE

Cutting plan for the beam entrance window (Yong Dai)

6 conditions (or more):

highest dpa & T
 high T, medium dpa
 medium dpa & T
 nedium dpa, medium T
 low dpa & T, high flow
 low dpa, T & flow

ASQ

Summary

MEGAPIE - unexpected behaviors and findings...:

- The target survived 4 months operation at full beam power
- Neutron yield higher than predicted
- Thermo-hydraulic behavior as predicted
- EMPs worked reliably without degradation
- ,none-too-pleasant' leaking of hydrocarbons (oil) into the IGS
- Small leaks of redioactive volatiles into the second containment
- Dismantling and cutting the target without (major) spread of contamination (NO Po-210 !!)
- Preparation of sample extraction concluded
- PIE has started

Many thanks to the MEGAPIE partner institutes and to the numerous people involved in the project

