

Optical Diagnostics *Thomas Tsang, BNL, Oct 20, 2006*

1

tight environment

- high radiation area
- non-serviceable area
- passive components
- optics only, no active electronics
- transmit image through flexible fiber bundle

Optical diagnostic tool:

high-speed camera to fast record transient phenomena

- back illuminated laser shadow photography technique
- freeze the image of events using high speed camera (up to 1 $\mu s/frame)$
- synchronized arrival of short laser light pulses illuminate onto the target
- the motion of the target after proton impact is freezed by high intensity short (150 ns) laser pulses
- 2-dimensional image

<u>Sumitomo imaging fibers – used in our setup</u>

TP03105B

	IGN-02/03	IGN-028/06	IGN-035/06	IGN-037/10	IGN-05/10	IGN-08/30	IGN-15/30	IGN-20/50	
Number of picture elements	3,000	6,000	6,000	10,000	10,000	30,000	30,000	50,000	
Jacketing diameter (um)	200	280	350	370	500	800	1,500	2,000	
Picture elements area diameter (um)	180	252	315	333	450	720	1,350	1,800	
Coating diameter (Primary) (um)	250	340	420	450	590	960	1,900	2,400	
Coating diameter (Secondary) (um)							2,500	3,000	
Circularity		>= 0.93							
Core material	GeO2 Containing Sili				aining Silic	1			
Cladding material	F Containing Silica						Pure Silica		
Coating material	Silicone					Silicon	e + PFA		
Numerical aperture	0.35					0.30			
Lattice defect (%)		<= 0.1							
Allowable bending radius (mm)	10	15	15	20	25	40	75	100	
Allowable max temp. (C)				18	50				
Copyright © 2003 Sumitomo Electric Indus	tries, LTD.	🗢 Sl	JMITOM	o elect	RIC				
Cost per foot						\$78			
Cost in 10 meter Total cost for 4 fibers (40 meter)									

Product Lineup

Rad-hard to 1 Mrad

Optical Diagnostics in secondary containment

largest FOV NIR illumination 0.01 ms frame rate

One set of optics per viewport

Conceptual design completed

	Optical components irradation using radiation sources #1 & #2										
	Source #1: CERN proton beam: 1.4 GeV, 5x10^15 protons, 320 krad, equivalent to 40 pulses of 24 GEV proton										
	Source #2: BNL Co60: 30 krad & 3 Mrad equivalent to 3.7 & ~370 pulses of 24 GeV proton										
	measurements wavelength ~ 800 nm										
		radiation equivalent NIR (~800nm)									
		source	proton pulse								
item #	components			before	after	results					
1	gold mirror reflector	#1	40	0.010	0 0 2 0	no change					
1 2	1 mm thick capphire window (8 hall long)	#1	40	0.910	0.920	no change					
2	E motor multimodo low OH fibor	#1	40	0.003	0.007						
3	3 5-meter multimode low-OH fiber		40	1.000	1.020	no change					
4	4 30-cm long Sumitomo imaging fiber		40	0.670	0.710	no change					
5	5 Grin objective lens, 2.43 mm long		~4	0.900	0.860	I=95%					
5	Grin objective lens, 2.43 mm long	#2	370	0.900	0.657	I=73%					
			1								
		~		-	-						
				сп							
	E Contraction of the second se			0	-						
						and the second					
				-							
				0							
				0	-						

Stainless steel primary: significant leak

Stainless steel primary: small leaks

10/06/06 - large leak detected, all gaskets are not good

10/10/06 - new gaskets installed, small leak detected, in 17 hrs pressure drop from 21 to 8 psi, fixed viewport #4 gasket.

10/11/06 – small leak in 21 hrs pressure drops from 21 to 19 psi leak rate of ~1.4 mTorr/sec

10/12/06 - Leak check using Metheson 8850 flammable gas sniffer, 5 ppm sensitivity, 15 psi of Ar/Methane (90%/10%) several tap holes aren't deep enough on viewport #4, shorten a few screws and tighten the viewport.

10/13/06: No leak detected, 21 psi holds for over 17 hrs

Optical Diagnostics on SS Primary

SS primary

Optical Diagnostics – complete setup

Multi-Pulse Train for SMD and FastVision Cameras

Optical Diagnostics on SS Primary

cw NIR light
conventional video camera
30 frame/sec, 1sec. movie

pulsed NIR light SMD camera 80 us/frame, 16 frames

pulsed NIR light

FastVision camera 2 ms/frame, 250 frames (only 16 frames showing)

pulsed laser light

Summary

- two 10-meter and one 1.5 meter (temporary) long imaging fibers assembled on SS primary
- SS primary are pressure tight (20 psi)
- dynamic image collection on all viewports were tested
- dis-mount and re-mounting optical base plate requires little or no realignment
- camera ↔ viewport are inter-changeable but the field of view on all viewports are fixed
- 3 more 10-meter imaging fibers just arrived for the remaining viewports and backup
- 2nd FastVision camera on its way for 4th viewport
- all optical diagnostic equipment headed to ORNL