Overview of Pion Capture Solenoids for MuSIC/COMET/PRISM

Akira SATO Department of Physics, Osaka University, JAPAN

Pion Capture Solenoid mini-Workshop @ BNL 2010/11/29-30

Wishful Staging Scenario from MuSIC to NF

pulsed muon:10¹³⁻¹⁴/s

Staging Programs for the μ -e conversion

	MuSIC	COMET	PRISM/PRIME
Physics	µ→eee nuclear physics material science	BR(μ-e)<10 ⁻¹⁶	BR(μ-e)<10 ⁻¹⁸
µ intensity	10 ⁸ µ/s	$10^8 \mu/s$ $10^{11} \mu/s$	
DC/Pulse	DC	Pulse width <100ns	Pulse width <10ns
Phase Potation?	No	No	Yes
Proton Beam	400W (400MeV, 1µA)	56kW (8GeV, 7µA)	2MW (2-5GeV?)
B _{max} of π Capture Solenoid	3.5 Tesla	5 Tesla	5 Tesla

Comparison on the pion capture systems

	MuSIC	COMET	PRISM	NuFact ⁽¹⁾
Muon Intensity	10 ⁸ /sec	10 ¹¹ /sec	10 ¹² /sec	10 ¹²⁻¹³ /sec
Muon Momentum	20-70 MeV/c (Backward)	20-70 MeV/c (Backward)	20-70 MeV/c (Backward)	170-500 MeV/c (Forward)
Time structure	Continuous	Pulsed	Pulsed	Pulsed
Proton Beam Power	400W (0.4GeV)	56kW (8GeV)	2-3MW (~8GeV)	4MW (8GeV)
Production Target	Graphite	Tungsten	Tungsten?	Mercury jet
Capture Solenoid Max. Field Strength	3.5 T	5.0 T	12-16 T	20 T
Inner radius of Main SC Coil	0.45 m	0.65 m	?	0.64 m
Outer radius of Main SC Coil	1.0 m	1.6 m	?	1.78 m

(1) Based on The Muon Collider/Neutrino Factory Target System, H.Kirk and K.McDonald (Aug.14,2010) and Study-II report

Backward and Forward Pion/Muon

A lot of radiation to forward direction

Pion Capture System in MuSIC, COMET, and NuFact

The 1st beam test has been performed at 29-30 July, 2010. The 2nd beam test will be in 13-15 Feb. 2011.

MuSIC in 2010

Requirements to the superconducting solenoids

- Strong magnetic field on the pion production target
 - Trap pions in 3.5 T
 - Superconducting coils surrounding the target
- Long solenoid transport channel with a big aperture
 - Pions decay out and muons transported in 2T solenoid
 - ~10m long
 - 360mm dia. bore
 - Correction dipole field for momentum and charge selection
- LHe free refrigeration
 - Conduction cooling by GM cryocoolers
 - Heat deposit on the coils < 1W
 - Dose < 1MGy
 - for insulator, glue ...
 - Neutron flux < 10^{20} n/m²
 - avoid degradation of the stabilizer of SC wires

Pion capture solenoid: radiation issue

- Radiation shields (27cm thick stainless steels) are installed b/w the target and the coils.
- MC simulation by MARS (M.Yoshida)
 - Heat deposit: 0.6W
 - 0.4W in the coils(~1ton)
 - 0.2W in the coil supports
 - Dose on the coils < 10kGy/year
 - Heat load
 - 100W on the target
 - 50W on the rad. shields
 - Neutron flux: 5x10¹⁸n/m²/year
 - no degradation is expected

Pion capture solenoid: parameters

Conductor	Cu-stabilized	
	NbTi	
Cable diameter	<i>ø</i> 1.2mm	
Cu/NbTi ratio	4	
RRR	230-300	
(R293K/R10K at 0T)		
Operation current	145A	
Max field on axis	3.5T	
Bore	<i>ø</i> 900mm	
Length	1000mm	
Inductance	400H	
Stored energy	5MJ	
Quench back heater	1.2mm dia.	
Cu wire	~1Ω@4K	

Transport solenoids

Solenoid coils

Operation current	145A
Field on axis	2T
Bore	<i>ø</i> 480mm
Length	200mm x8Coils
Inductance	124H
Stored energy	1.4MJ
Quench back heater Cu wire	1.3mm dia. ~0.05Ω/Coil@4K

The world first working beam line which adopts cosθ winding dipole coils

Correction dipole coils

Coil layout	Saddle shape dipole
	6 layers
	528 turns (1 set)
Current	115A (Bipolar)
Field	0.04T
Aperture	<i>ø</i> 460mm
Length	200mm
Inductance	0.04H/Coil
Stored Energy	280J/Coil

Refrigeration

- Conduction cooling by GM cryocoolers
- Can be cooled down within 1 week with pre-cooling by LN2
- Pion capture solenoid
 - 4K: 1W+nucl. heating 0.6W
 - □ 300K→40K: 50W
 - GM 1st stage
 - □ 3 x GM cryocoler
 - 1.5Wx2+1Wx1 @4K
 - 45Wx2+44W @40K
- Transport solenoid
 - □ 4K: 0.8W
 - □ 300K→40K : 50W
 - GM 1st stage
 - 2 x Cryocoolers on each cryostat (BT5,BT3)
 - 1Wx2 @4K
 - 44Wx2 @40K
- Achievable temperature
 - Pion capture solenoid : 3.7K
 - Transport solenoids : 4.2K-4.5K(BT3), 4.5K-5.8K(BT5)

Expected Muon Yield

- MC simulations were performed from the production target to the end of the transport solenoid (180ded.)
 - by Dr. M.Yoshida
- Simulation codes:
 - Hadron production at the graphite target
 - MARS
 - Tracking in the magnetic field
 - g4beamline

Simulation results for B_y=±0.04T

This is just an example. We need to optimize the beam characteristic for various experiments using collimators, DC separators, and so on.

- At the end of the transport solenoid (180 deg.)
- Charge of the muons can be selected by changing the direction of the dipole field.

Charged Particle Trajectory in Curved Solenoids

 A center of helical trajectory of charged particles in a curved
Drift isodeCoorded Selerisidrifted by

$$D = \frac{p}{qB} \theta_{bend} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

 $D: drift \ distance$ $B: Solenoid \ field$ $\theta_{bend}: Bending \ angle \ of \ the \ solenoid \ channel$ $p: Momentum \ of \ the \ particle$ $q: Charge \ of \ the \ particle$ $\theta: atan(P_T/P_L)$

 This effect can be used for charge and momentum selection. • This drift can be compensated by an auxiliary dipole field parallel to Vertical Compensation Magnetic Field the drift direction given by

$$B_{comp} = \frac{p}{qr} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

p: Momentum of the particle q: Charge of the particle r: Major radius of the solenoid θ : atan(P_T/P_L)

COMET and Mu2E: S.E.S.~10⁻¹⁶

PRISM Task Force

- The PRISM-FFAG Task Force was proposed and discussed during the last PRISM-FFAG workshop at ICL (1-2 July'09).
- The aim of the Task Force is to address the technological challenges in realizing an FFAG based µ-e conversion experiment, but also to strengthen the R&D for muon accelerators in the context of the Neutrino Factory and future muon physics experiments.
- The following key areas of activity were identified and proposed to be covered within the Task Force:
 - physics of muon to electron conversion,
 - proton source,
 - pion capture,
 - muon beam transport,
 - injection and extraction for PRISM-FFAG ring,
 - FFAG ring design including the search for a new improved version,
 - FFAG hardware R&D for RF system and injection/extraction kicker and septum magnets.

Studies will continue to obtain a feasible design, aiming on CDR in 2011.

Synergy between PRISM and Neutrino Factory

Members of PRISM Task Force

- J. Pasternak (contact person), Imperial College London / RAL STFC
- L. J. Jenner, A. Kurup, Imperial College London / Fermilab
- Y. Uchida, Imperial College London
- B. Muratori, S. L. Smith, Cockcroft Institute / STFC-DL-ASTeC
- K. M. Hock, Cockcroft Institute / University of Liverpool
- R. J. Barlow, Cockcroft Institute / University of Manchester
- C. Ohmori, KEK/JAEA
- H. Witte, T. Yokoi, JAI, Oxford University
- J-B. Lagrange, Y. Mori, Kyoto University, KURRI
- Y. Kuno, A. Sato, Osaka University
- D. Kelliher, S. Machida, C. Prior, STFC-RAL-ASTeC
- M. Lancaster, University College London

Welcome to join us!

Many young physicists. We are trying to apply our skills, which got thorough the NF related studies, to the muon physics experiment!

as on IPAC'10 paper

Staging Plan of µ-e conv. in Japan

$B(\mu^- + Al \to e^- + Al) < 10^{-16}$

- •without a muon storage ring.
- with a slowly-extracted pulsed proton beam.
- doable at the J-PARC NP Hall.
- regarded as the first phase / MECO type
- Early realization

$B(\mu^{-} + Ti \to e^{-} + Ti) < 10^{-18}$

- with a muon storage ring.
- with a fast-extracted pulsed proton beam.
- •need a new beamline and experimental hall.
- regarded as the second phase.
- Ultimate search

Schematic Layout of New PRISM

Pion Capture Solenoid R&D in Japan

The first SC pion capture system has been build in Osaka for MuSIC.

- Design study for the COMET/PRISM capture solenoid.
 - Measurement of radiation heating using a mockup.
 - Nuclear Instruments and Methods in Physics Research A 545 (2005) 88–96
 - Neutron Irradiation Experiments for Pure Stabilizers at Low Temperature
 - MgB₂?

Experimental Conditions (KEK 12GeV-PS)

Beam parameters

- 12 GeV proton
- Intensity ~10¹¹ (protons/sec)
- Slow extraction

Experimental area

At upstream of EP2-A dump

Experimental setup

 Sensitive measurement of radiation heat load to the mockup with the cryo-calorimeter

Experimental Installation

How to Measure Radiation Heat Load

Fig. 12. Comparison of the simulation results with the normalized heat flux.

Relationship among the programs

towards the ultimate µ-e conversion study

Akira SATO