Transmission Losses

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

Overview

- There are significant transmission losses in the front end
- How much?
- What are the implications?
- Simulation in ICOOL 3.10

Order of Magnitude

- 10²¹ muons at the storage rings per year (per sign?)
 - 10⁷ seconds per year
 - => 10¹⁴ muons per second
 - Average kinetic energy ~ 200 MeV (including high E tail)
 - => 3 kW muon beam power in front end
 - Assume 30 % muon (pion) transmission through front end
 - = > 10 kW peak muon (pion) beam power in front end
- What about secondaries?
 - Look at MARS file (courtesy of Harold)
 - Track through ICOOL
- Aside:
 - 4 MW / 8 GeV gives 3*10¹⁵ protons/second
 - 3*10² protons/year
 - => require 0.03 muons per proton at the storage ring (per sign?)

Order of Magnitude

- 10²¹ muons at the storage rings per year
 - 10⁷ seconds per year
 - 10¹⁴ muons per second at average kinetic energy of 200 MeV
 - => 3 kW muon beam power in front end
 - Assume 50 % transmission
 - 6 kW peak muon beam power in front end
- What about secondaries?
 - Look at MARS file (c/o Harold) and track through ICOOL...

Particle distributions

- Looks like we have to worry about protons
 - Spallation protons at low energy
 - Fringe of primary protons at high energy(?)
- And electrons?
- (Nb axis ranges are not the same for each plot)

Tracking and Losses

Rate

- Significant numbers of electrons, protons transported
- 0.098/0.10 good mu+/mu- per proton
 - Ecalc9f with usual cuts:
 - A_t < 30 mm, A₁ < 150 mm
 - 0.1 < pz < 0.3 GeV/c
 - Do we have too many?

Losses

- Lower plot shows integrated losses excluding decays
- Lots of loss at entrance to cooling
 - Flipping magnetic lattice
 - Stopping power of absorbers greater for protons, electrons

Beam power

- Beam power [kW] 00 001 008 proton mu+ and mupi+ and pie+ and e-60 40 20 0 50 100 150 200 250 300 z [m]
- Beam power
 - Rather high
 - Obviously significant losses
 - Calculated using kinetic energy of beam
 - Normalised to 4 MW/8 GeV
 - Beam power is factor 10 higher than order of magnitude estimate
 - But I have factor 8 more good muons than order of magnitude estimate(!)

Heat deposition

- Top plot is change in beam power/length
 - Includes decay losses
 - Includes loss/gain from RF acceleration
 - Includes loss in windows/LiH
- Bottom plot is power deposited/length
 - Transmission losses excluding decays
- For comparison
 - ISIS rule of thumb is < 1 W/m proton loss</p>
 - So that the machine doesn't become radioactive => remote handling
 - 2-3 orders of magnitude too high
 - What about leptons?
 - MICE spectrometers have 6 W of cooling
 - Repeat in G4 to see where losses are going
- Looks a bit scary

Conclusions

- Clearly heat deposition is significant
 - Worry about normalisation factor
- Three issues:
 - Activation of the linac
 - Heat load on superconductors
 - Radiation damage (to e.g. superconductors)
- These losses are 2-3 orders of magnitude too high
- Try:
 - Transverse collimation (Snopok/Rogers)
 - Take out particles with large transverse amplitude at a convenient point away from sensitive hardware
 - Proton absorber (Prior/student)
 - Protons stop quicker than pions/muons in material
- If that's not enough we will have to try:
 - Chicane to sweep out off-momentum particles
 - Revised lattice
- At the moment this looks like a bit of a feasibility issue