Code Comparison and Physics Process Monitoring

Chris Rogers, ASTeC, Rutherford Appleton Laboratory 23 Nov 2010

Overview

- For paper studies we are very dependent on Monte Carlo codes
- It is good to check that those codes do what we think
- Things we need to test:
 - Stepping through fields
 - Physics process model for passage through material
- Two approaches to testing
 - Run through lattice and check for agreement between different codes and versions
 - Test element-by-element and look for agreement between different codes and versions
 - Also check with experiment or analytical models
 - Quite lattice-independent
- Automated and code-independent
 - Want to test ICOOL and G4Beamline (and G4MICE)
 - Want to test for each new revision
- Also compare different build environments

Geometries tested

- Look at a wide variety of materials and particles
 - Use a cylindrical block of material with some thickness
 - Fire ensemble of particles of some type with some nominal momentum on-axis
 - Concentrate on mu+ in Lithium Hydride and liquid Hydrogen
 - But consider all relevant charged particles and all relevant materials
 - No neutrals
 - Look at what happens to a monochromatic pencil beam
- Look at all ICOOL versions 3.10 (beginning 2008) to 3.26
 - ICOOL 3.20 is my reference version
 - Built with gcc version 4.3.4 (GCC)
 - Test on 32 bit build vs 64 bit build
- For all simulations I use
 - Idecay=.true. Idedx=.true. Istrag=.true. Iscatter=.true.
 - delev=2 straglev=5 scatlev=6

Test algorithm

- Test pass or fail determined by Kolmogorov-Smirnov test
 - Check distance between cumulative density plot
 - Compare with theoretical distribution
 - Determine probability that two plots are different
 - Note I make the test on binned data
- Look at both px distribution and energy distribution
 - Energy distribution is most sensitive test
- Nb apologise some labels overlap the plots
 - Built in an automatic way

Hadrons

10.0 mm LITHIUM_HYDRIDE with 10000 400.0 MeV/c proton 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 1500.0 MeV/c proton 100.0 mm steps

fact

Electrons

1.0 mm LITHIUM_HYDRIDE with 10000 10.0 MeV/c e- 0.1 mm steps

1.0 mm LITHIUM_HYDRIDE with 10000 10.0 MeV/c e- 0.1 mm steps

1.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c e- 0.1 mm steps

1.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c e- 0.1 mm steps

Muons in windows, etc

0.5 mm AI with 10000 200.0 MeV/c mu+ 0.1 mm steps

Muons in liquid Hydrogen

350.0 mm IH2 with 10000 100.0 MeV/c mu+ 100.0 mm steps

350.0 mm IH2 with 10000 400.0 MeV/c mu+ 100.0 mm steps

350.0 mm IH2 with 100000 200.0 MeV/c mu+ 100.0 mm steps

350.0 mm IH2 with 100000 200.0 MeV/c mu+ 100.0 mm steps

Muons in LiH (step size)

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu+ 1.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu+ 1.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

Muons in LiH (mu- vs mu+)

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu- 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu- 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

Muons in LiH (momentum)

10.0 mm LITHIUM_HYDRIDE with 10000 100.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 100.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 400.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 400.0 MeV/c mu+ 100.0 mm steps

Muons in LiH (64 bit vs 32 bit)

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu+ 1.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu+ 1.0 mm steps

Muons in LiH (incl. G4MICE)

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 100000 200.0 MeV/c mu+ 100.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu+ 1.0 mm steps

10.0 mm LITHIUM_HYDRIDE with 10000 200.0 MeV/c mu+ 1.0 mm steps

Conclusions

- ICOOL delev=2 scatlev=5 and straglev=6 models have moved quite a bit in the last 2 years
 - For all particles
 - For all materials
- We now have a (mostly) automated test to monitor this
 - Easy to monitor other physics models
 - Difficulty is in trying to come up with a finite number of things to test
- To do
 - Set up equivalent tests for g4beamline (and G4MICE)
 - Add some more test types (beam moments are important to us)
 - Add MuScat data
- Probably next year sometime
 - Tests on field tracking
 - Pillbox cavity
 - Constant Bz
 - Solenoid field