

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Shielded RF Status

- Shielded RF Lattice was developed until ~ April 2010
- April 2010, we decided to stick with existing baseline front end in lieu of results from MTA for IDR
- Subsequently, problem with secondaries came up and my work shifted to design of chicane system
- Need to soon make the same decision for RDR
 - Time to dust the design off

Shielded RF - Reminder

- Increase cell length to remove RF from solenoid fringe fields
 - Add shielding using iron or bucking coils
 - Try to keep good acceptance and focusing
- Look at cooling section
 - This is where the RF is most limited
 - This is where optics are most demanding
- How well can we cool in this shielded scenario?
- How well can we optimise the cooling lattice?
- Try to keep RF cavities in < 0.1
 0.5 T fields
- Liquid Hydrogen absorbers

Lattice quality

- Two criteria for lattice quality
- β function => how tightly focussed the beam is at the absorber
 - Determines how much cooling we get
 - Require good β function over a large momentum range
- Acceptance => the beam emittance that makes it through the lattice
 - Determines how much beam we get through
- Scale as $\sim <B_z^2 >/p$

β vs Cell Length

- We want tight focussing on the absorbers for good cooling performance
 - Tight focussing => more cooling
 - Aim for $\beta < \sim 1500$ mm over ~ 150 300 MeV/c (liquid Hydrogen)
- As cell length gets longer dβ/dp gets worse
 - Making it hard to contain a beam with a large momentum spread
- Keep cell as short as possible
 - To keep B_z off RF, need to reduce solenoid fringe field

Dynamic Aperture vs Radius

Reducing radius of coil reduces lattice acceptance

- Aim for acceptances >~ 100 mm
- Naively "expect" that reducing coil radius decreases acceptance
- Particles travel through region of poor field quality near the coils"
- In solenoid, optics is uniquely defined by on-axis field
 - So any attempt to curtail the fields is like reducing the coil radius
 - What does "poor field quality" really mean?

Non-Linear Terms

- Non-linear terms => $x_{out} = a_{ij} x_{in}^{i} p_{in}^{j}$
- 2nd order terms have i+j=2
 - Purely chromatic, can be ignored
- 3rd order terms have i+j=3
 - Increase by order of magnitude in short fringe field
 - In theory go as d^2B_z/dz^2
 - For very short fringe fields 3rd order terms become large
 - d²B_z/dz² becomes large
 - e.g. consider tanh model for B_z(r=0)
 - $B_z = tanh[(z-z_0)/\lambda] + tanh[(z-z_0)/\lambda]$
- Introducing bucking coils etc is equivalent to reducing coil radius

Cooling Performance

- Transmission into momentum bite 100-300 MeV/c and acceptance of 30 mm
- Shielding gets increase of ~ 52% (better than noshielding!)
- No-shielding gets increase of ~ 45%

Bucked Magnet Design

- "Bucking magnet design"
 - Use a coil with opposite current
 - Shield the RF cavities
- Nb field flips as normal
 - Absolute value of Bz plotted
- Magnet design reasonable
 - B_z on coil may be a bit high
 - May be better to use "shells" as in linac
- Move to 2.5 m cell
 - Get ~ 1.2 m with $B_z < 0.1 T$
 - But never tracked successfully

z [mm]

Dynamic Aperture vs Energy

- How does cooling performance respond to energy?
 - "Geometric emittance effect"
 - Require smaller aperture to get the same beam through
 - Might expect to improve acceptance by increasing energy
 - Indeed this can be seen in simulation to a point

Introduce "acceleration cell"

Extra RF cavity!

Higher Momentum Beam

- Fairly large transmission losses
 - >~ 50%
- Most of the remaining beam is inside the 30 mm acceptance
- Getting increase in rate of ~ 70 %
 - But with more hardware
 - Performance quite similar to baseline
- If I stop at point A I use roughly the same amount of hardware as the baseline (RF packing fraction ~ 1/2 that of the baseline)
 - And lose a few muons
- I can recover baseline performance if I go to Point B
 - But those last few muons are expensive!

Using Baseline Phase Rotation System

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Capture at Higher P

- Try using existing capture scheme for acceleration
 - Rather than special Normal Conducting linac
 - Expensive!
- Keep peak field same
 - Change phasing to bring both reference particles in at higher momentum
 - Still phase with 233 MeV/c particle
 - Needs ~ 6 degrees phase to bring to 273 MeV/c
- Cut 273 MeV/c < Pz < 373 MeV/c</p>
- All simulations done in g4bl v2.06
- No windows on RF/IH2
- Probably needs some jostling for space (1m long coil)

Matching from RF Capture

- Bring into flipping lattice
- Okay match
 - Could probably do better
- Note higher beta function
 - Needs Liquid Hydrogen!

Emittances

- Longitudinal match looks quite good
- Transverse get a big emittance spike round matching point
 - Mismatch?
 - Beam loss?
- But general transverse emittance performance looks good

Capture Performance

- Transmission inside usual cuts:
 - 30 mm normalised transverse acceptance
 - 150 mm normalised longitudinal acceptance
- Note however momentum cut is
 - 173 < Pz < 373 MeV/c for low field geometry</p>
 - 100 < Pz < 200 MeV/c for baseline</p>

Shielded RF Status

- Full simulation in G4BL
- Includes reoptimisation of phase rotation to capture at higher energy
- Looks encouraging
- Needs windows adding