Front End for MAP Neutrino Factory/Collider rf considerations

David Neuffer

May 29, 2014

Outline

> Previous baseline was 200 MHz (IDS nu Factory)

Rf, power req.

> Front End for MAP NF/MC 325 MHz

- Bunch train shorter than IDS ...
- With Chicane/Absorber
- Current baseline
 - Use short taper

> Variations under study

325MHz System "Collider"

- 20T→ 2T
- Buncher
 - P_o=250MeV/c
 - P_N=154 MeV/c; N=10
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - f_{RF} : 490 \rightarrow 365MHz

> Rotator

- V_{rf}: 20MV/m
 - (2/3 occupied)
- f_{RF} : 364 \rightarrow 326MHz
- N=12.045
- P_{0} , $P_N \rightarrow 245$ MeV/c
- > Cooler
 - 245 MeV/c
 - 325 MHz
 - 25 MV/m
 - 2 1.5 cm LiH absorbers /0.75m

325 Collider Update w/Chicane/Absorber

- > 325 "muon collider" with chicane absorber
 - with added drifts between chicane and absorber
 - ~30 m
 - ~ 0.105 $\mu/p \rightarrow$ but smaller emittance beams
 - scraped to better fit?
- > Change to shorter taper
 - $15 \text{ m} \rightarrow 6 \text{ m}$
 - (Hisham) slight improvement in throughput (~ 5%)
 - We are using Hisham's more recent distributions
 - Gains ~ 5-10%
 - Total is now ~ 0.115 μ/p (in baseline ICOOL simulation units)
- > Better Rotator/Cooler match (Diktys)
 - **-** +5%
 - Cooler will be replaced by better 6-D cooler (Alexahin)

Compare 325 w chicane vs old 200

High P cutoff is ~700 MeV/c (from ~500 MeV/c)

Rf cavity

Concept

design

construction

MAP rf properties (~ MICE rf)

rf

IDS RF requirements

rf

Cooler

Total

df+bxr+rttr

75m

~134m

200

93

325

Rf Buncher/Rotator requirements

1

30

25 MV/m

~500MV

~3.7MW/cavity

140MW

Discretization of rf frequencies

Our goal is to reduce the number of frequencies. Going from 120 to 30 frequencies -> 8% loss

Frequency (MHz)	Gradient (MV/m)
493.71	0.30
482.21	1.24
470.27	1.95
458.40	3.38
448.07	4.45
437.73	5.52
427.86	6.60
418.43	7,67
409.41	8.74
400.76	9.81
392.48	10.88
384.53	11.95
376.89	13.02
369.55	14.30

Rotator rf parameters

Frequency

(MHz)

363.86

357.57

352.20

347.59

343.65

340.27

337.39

334.95

332.88

331.16

329.75

328.62

327.73

327.08

326.65

326.41

Dependence on rf gradient

- With same cooling channel
 25MV/m IDS 4-D cooling
- Change Buncher/Rotator peak rf voltage
 - 0 -25 MV/m
- Longer bunch train captured with larger V'

Dependence on B_{final}

FRONT END PERFORMANCE AT DIFFERENT END FIELDS

Summary

> We are studying 325 MHz based front end

- produces more bunches in same length bunch train than 200 MHz
- requires more bunches to be recombined ~12 \rightarrow 21
 - more difficult ... ?
 - HCC recombiner ?
- Including chicane/absorber
 - Improved matching
- Would like to fit more µ in fewer bunches

Current Status

P5 process:

P5 Result:

Supplemental slides

325 (w chicane/absorber)

- > ~60 m long bunch train
 - ~60 325 MHz buckets
- For collider choose "best 21 bunches "
 - (~19m)
- Includes ~2/3 of captured µ's
 - many are lost
- > 21bunches are recombined to 1 in collider scenario
 - It is more difficult to recombine 21 than 12
- Would like to extend acceptance or generate shorter train

