
Variations of the front end for a neutrino factory

David Neuffer *FNAL*

(September 15, 2009)

Outline

Front End for the Neutrino Factory/MC

- Shorter front end example-
 - basis for present study

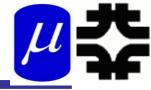
> Rf cavities in solenoids?

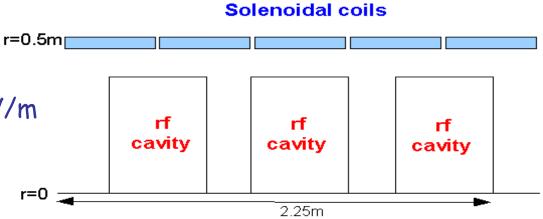
- high gradient cavities may not work in ~2T fields
- Option explored
 - Use lower fields (B, V')

> Need baseline design for IDS

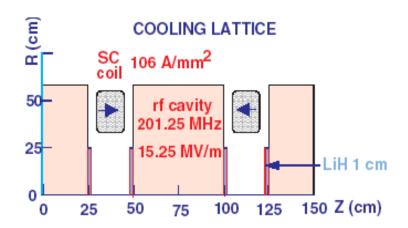
need baseline for "5-year Plan"

IDS - Shorter Version

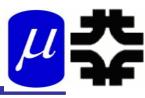

> Reduce drift, buncher, rotator to get



3

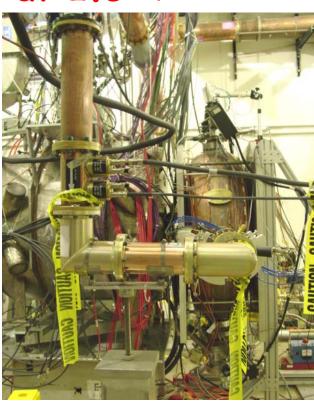


- Buncher and Rotator have rf within ~2T fields
 - rf cavity/drift spacing same throughout (0.5m, 0.25)
 - rf gradient goes from 0 to 15 MV/m in buncher cavities
- Cooling baseline
 - ASOL lattice
 - 1 cm LiH slabs (3.6MeV/cell)
 - ~15MV/m cavities
 - also consider H₂ cooling

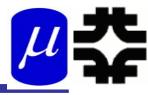


ASOL lattice

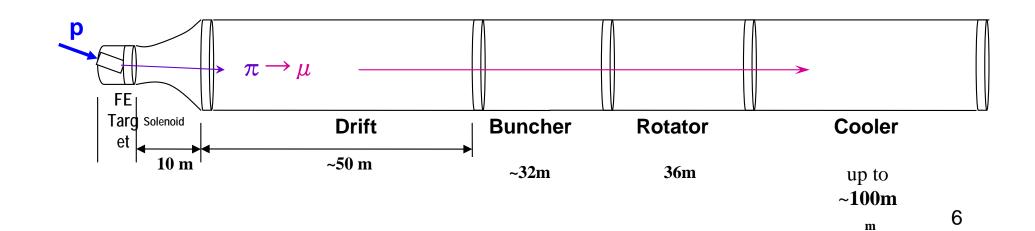
Optimizations

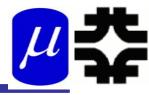


Major uncertainty is high-gradient rf within solenoidal fields

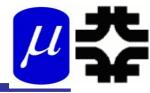

- V'rf / Bsolenoid ???
- Currently have B= 1.5 to 2T, V = 12 to 15 MV/m
- baseline frequency is ~200 MHz

> Experiments have achieved~ 14 MV/m at 2.5-T


- (~ 0.75-T at nearest thin Be window)
- Solenoid near 201 MHz cavity



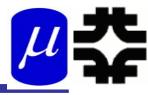
- > Change magnetic field, V'rf to study limits
- > Use "short" front end for studies
 - Baseline had 2T solenoid in drift and buncher
 - 0 to 15MV/m rf
 - 15 MV/m in rotator; 15 MV/m in cooler
 - vary rotator from 9 to 15 MV/m;
 - Cooler 10 to 18 MV/m
 - all in 0.5m rf, 0.25 drift cells
 - with lower gradient



> Muons per 10 8-GeV protons

Cooler/ Rotator	10	12	14	15	17	18 MV/m
10	0.35 (0.63)	0.55 (0.67)	0.66	0.73		
12		0.57 (0.72)	0.754	0.77		0.80
14			0.776	0.80	0.84	
15				0.81	0.85	0.84
	(0.65cm)	(0.8cm)				

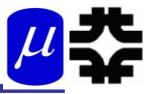
Variation is not strong; more rf still means more muons



> B= 1.25 T (~Study 2)

> match into alternating solenoid

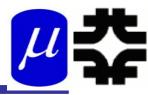
- Use old R. Palmer match
- > As before, lower cooling gradient implies using less absorber per cell
 - 15MV/m 1cm LiH
 - 12MV/m 0.8cmLiH (~5% worse than 15MV/m)
 - 10MV/m 0.65cm (~10% worse than ~15MV/m)



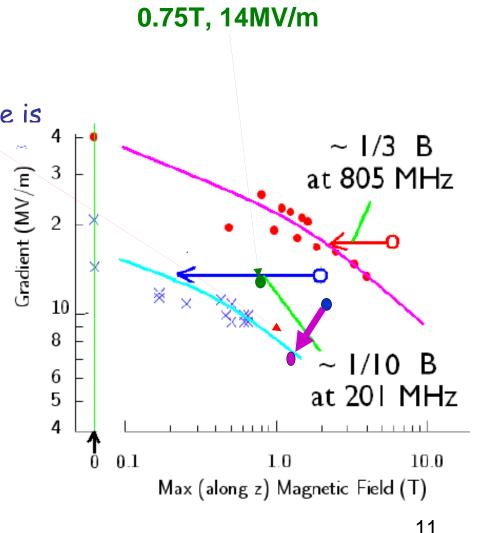
> Muons per 10 8-GeV protons

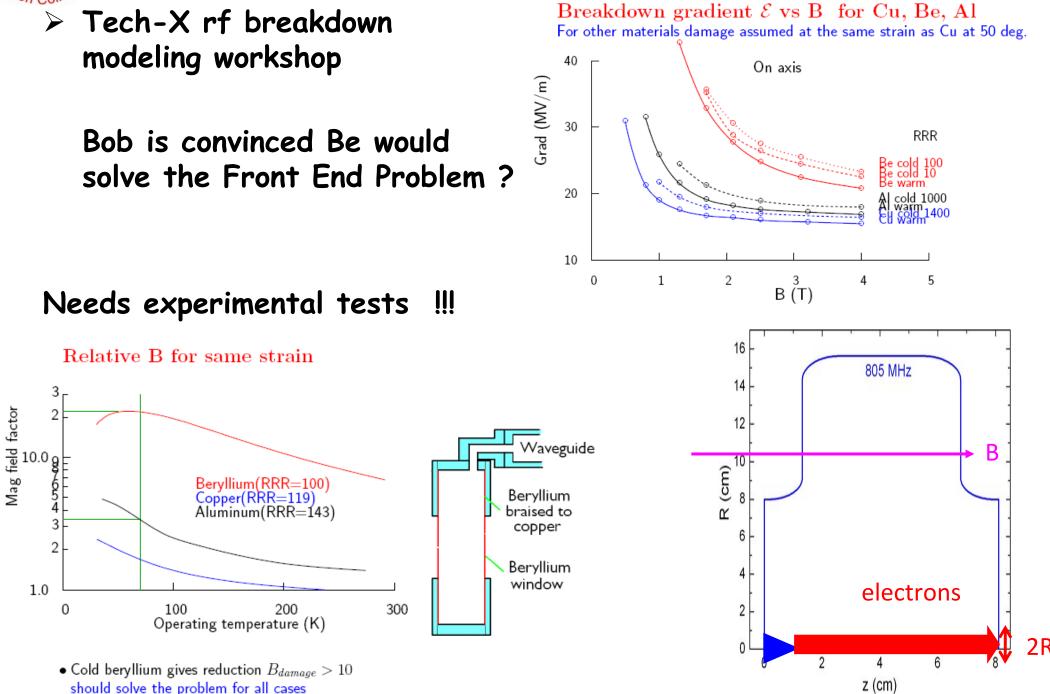
Cooler/ Rotator	10	12	14	15	16	17 MV/m
9	(0.58)			0.68		
10	(0.61)	(0.65)	0.655	0.705		
12		(0.67)		0.75		
14			0.72	0.77		
15				0.78	0.805	0.81
	(0.65cm) z=231m	(0.8cm) z=220m		1.0cm z=204m		

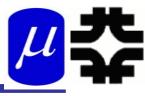
Variation is not strong; more rf still means more muons


- > B=2T is only slightly better than B=1.25T
 - only ~5% fewer μ/p in acceptance at 1.25T

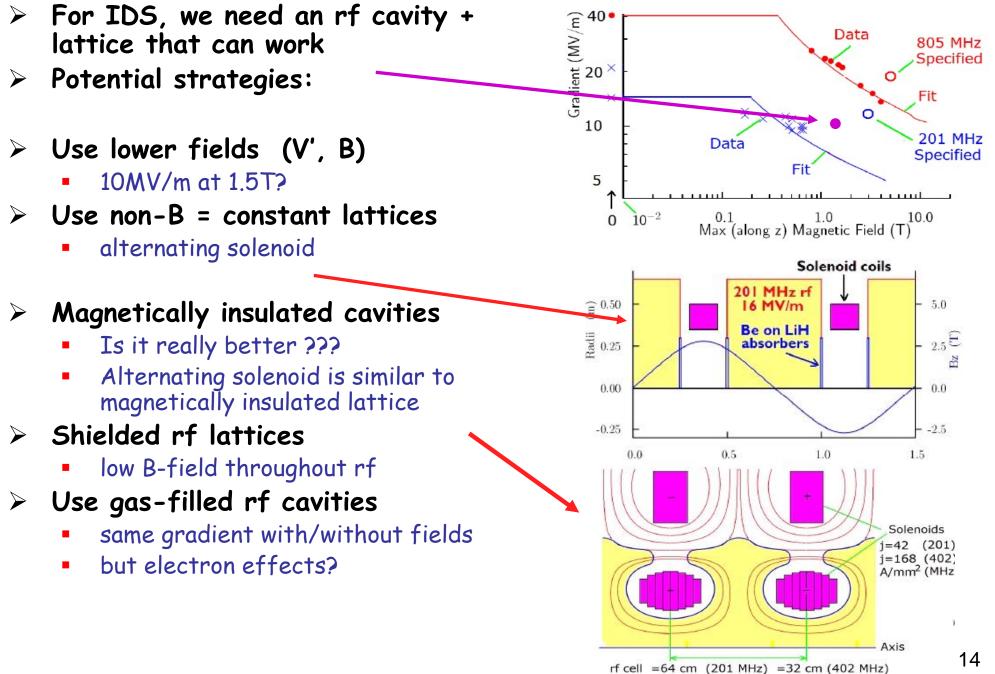
> Optimum B is (probably) somewhere in between


- B=1.75T for study 2A
- Cost optimum is (probably) less


- Adequate acceptance can be obtained by reducing magnetic fields and gradients
- > B -> 1.25T, V' -> 10 MV/m ??
 - (10MV/m is 7MV/m real estate gradient; could use 7MV/m if space is filled.)
- Reduced B, V' are relatively certain to work.
- > Cost optimum?
 - B=1.5T ?, 12MV/m



Change cavity material-Palmer


> Need one design likely to work for V_{rf}/B-field

- rf studies are likely to be inconclusive
- B=1.25T; V' = 10MV/m is very likely to work
- B= 2T; V' = 15 MV/m should work with Be
- > Hold review to endorse a potential design for IDS
 - likely to be acceptable (V_{rf}/B-field)
 - April 2010 ?

Use reviewed design as basis for IDS engineering study

Solutions to possible rf cavity limitations μ

