The MEG experiment.

Dmitry Grigoriev Budker Institute of Nuclear Physics Novosibirsk State University Novosibirsk, Russia On behalf of MEG collaboration

NuFact-2015 Rio de Janeiro, Brazil, 10/08/2015

MEG HOME

Switzerland PSI, ETH-Z

Italy

INFN + Univ. : Pisa, Genova, Pavia, Roma I & Lecce

MEG Collaboration

some 65 Physicists 5 Countries, 14 Institutes

USA University of California Irvine UCI

Russia BINP, Novosibirsk, JiNR, Dubna

Japan Univ.Tokyo, KEK

Waseda Univ., Kyushu Univ.

Why $\mu^+ \rightarrow e^+ \gamma$

- cLFV Forbidden in SM (background: Br(µ⁺→e⁺γ) < 10⁻⁵⁴)
 Discovery will be an unambiguous evidence of new physics.
- So far, no cLFV signal has been observed.
- Many new physics beyond SM (e.g. SUSY, Extra dimensions etc.) predict observable Br (10⁻¹⁴ — 10⁻¹¹)
- Complementary search of new physics:
 - LHC Run 2
 - New experiments to search for other muon channels (µ→e convertion, µ→eee)

Signal and backgrounds

Signal μ + decay at rest52.8 MeV (half of M $_{\mu}$) (E $_{\gamma}$,E $_{e}$)Back-to-back ($\theta_{e\gamma}$, $\phi_{e\gamma}$)Timing coincidence (T $_{e\gamma}$)

Accidental background (dominant)

Michel decay e^+ + random γ

Random timing, angle, E < 52.8MeV

Radiative muon decay

 $\mu^{*} \rightarrow e^{*} v v \gamma$

Timing coincident, not back-to back,

E <52.8MeV

Key points of the experiment

- high quality & rate stopped μ-beam ⇒ surface muon beam, (E × B) Wien filter, SC-solenoid-focusing+degrador.
- e⁺ magnetic spectrometer with excellent tracking & timing capabilities ⇒ COBRA magnet, DCs & TCs.
- photon detector with excellent spatial, timing & energy resolutions ⇒ 900 litre LXe detector (largest in world).
- Stable and well monitored & calibrated detector ⇒ Arsenal of calibration & monitoring tools.

Layout of the experiment

Layout of the detector

The important part – gradient field COBRA magnet: tracks radius is independent on incident angle at 52.8 MeV/c

Beam line

- High-intensity DC surface muon beam πE5+MEG
 ⇒ capable of>10⁸ μ⁺/s at 28 MeV/c(optimal rate 3x10⁷/s)
- "pure" muon beam Wien filter(ExB)+Collimator system
- $\Rightarrow \mu$ -e separation at collimator >7.5 σ (12 cm)
- Small beam-spot + high transmission -BTS
 ⇒ focus enhancement, beam σ~10 mm at target
 ⇒ second focus at centre BTS degrader 300 µm
- Thin stopping target + minimal scattering end-caps
 ⇒18mg/cm² CH₂ target at 70°+He COBRA environment
 + remote Target & End-cap insertion system

Target

collimator

- SC COBRA Magnet
- Gradient Bfield (1.27-0.5) T <u>COnstant Bending RA</u>dius
- 0.2 X₀ fiducial thickness
 γ-transparency 95%
- NC Compensations coils reduce Bfield at Calorimeter
 5mT at PMT positions

- Drift Chambers
- 16 radial, staggered double-layered DCs

- each 9 cells with "Vernier" cathodes (5 cm pitch)
- 50:50 He/C₂H₆

Momentum resolution $\langle \sigma p/p \rangle$ 6‰ Angular resolution (e⁺) $\phi \sim 7 \text{ mr}$ $\theta \sim 10 \text{ mr}$

• Ultra-thin $2 \cdot 10^{-3} X_0$ along e⁺ path

- Timing Counter Arrays
- 2 arrays of each –

 15 axial scintillator bars
 BC404 + 2" fine mesh PMT
 e⁺ impact point + timing
 intrinsic σ_t ≈ 70ps over 90 cm
- 256 orthogonal radial scintillating fibres BCF-20 + APDs triggering (angular matching)

Calorimeter

- Largest LXe calorimeter in the world 900 litres $\Delta\Omega/4\pi = 10\%$
- Fast response (4, 22 ns) minimize "pileup"
- Large light-yield ~80% Nal
- high density, short X₀
- Homogeneous medium uniform response,
- no segmentation needed
- Sensitive to impurities at sub –ppm level (mainly H₂O, O₂, N₂)
- Scintillation light used for shower reconstruction $\lambda = 175$ nm
- 846 PMTs wall-mounted inside LXe-volume signals digitized @ 1.6 GHz
- Light material between PMTs
- Thin honeycomb window
- 14 X₀ of LXe

Energy resolution $\langle \sigma E/E \rangle \langle 2\% \text{ at } 52.8 \text{ MeV} \rangle$ Timing resolution = 67 ps Position resolution (X,Y) 5 mm, (depth) 6 mm γ -efficiency 59% ($\varepsilon_{\text{Detect}} \times \varepsilon_{\text{Anal}}$)

Calibration and Monitoring

Cosmic rel. alignment LXe + spectrometer

<u>PMT</u>: Gain, QE, <u>LXe</u>: Light-yield , Attenuation-length <u>Calorimeter</u>: Energy-scale DC: Momentum scale <u>Calo.+TC+DC</u>: Relative detector timing, Alignment e.g. α s, LED, CEX (π -p \rightarrow π^{0} n or γ n, "Dalitz-decay"), RMD, protons from C-W accelerator on Li₂B₄O₇, n-generator+ Ni, cosmics, Mott e⁺ beam

timing ca

EG De

Li(p,;)Be LiF target COBRA ce PMT QE & Att

Mott mono.

e+ scattering

1884 51.65 1.043 78.22 / 53 15.03 ± 2.25

 $\begin{array}{c} 51 \pm \ 0.1 \\ 1.758 \pm \ 0.134 \\ 268.3 \pm \ 9.4 \\ 51.7 \pm \ 0.0 \end{array}$

0 40 42 44 46 48 50 52 54 56 58 60 E IMeVI

 0.4444 ± 0.0124

to reduce pile-ups A few days - 1 week to

2² + 0

r^a γγ (55MeV, 83M + p γ + n (129Me)

Pion CEX on LH₂

Detector Stability

Detector Stability permanently monitored

- Light Yield stable to < 1% rms < 2‰
- Photon energy-scale cross-checked using BG-spectrum from LXe side-bands
- Timing stability checked using radiative muon decay events (RMD) taken simultaneously during run (multi-trigger) T_{eγ} stable ~ 15 ps over whole run

129

120 140

Energy [MeV]

Analysis Principle

III Time and E_γ sidebands Important Ingredient to Analysis also angular sidebands introduced ⇒ Since our background is dominated by "accidentals" the side bands can be used to estimate the background in the signal region, check of experimental sensitivity & measure the timing resolution using RMD in the E_γ-sideband

Results

Phy. Rev. Lett. 110, 201801 (2013)

Data taking finished at 31.08.2013 Statistics is doubled compare to published

year	Nstop μ, x10 ¹³	Sensitivity, x10 ⁻¹³	Br, Upper limit (CL 90%), x10 ⁻¹³
2009+2010	17.5	13	13
2011	18.5	11	6,7
2009+2010+2011	36.0	7.7	5.7 (20 times better
All data (expected)	~80	~5	than MEGA)

Final result of analysis is expected by the end of 2015 with the improved analysis. The data are reprocessed now.

Improvement of the analysis

- Event reconstruction algorithm.
- Calibration procedures.
- Background rejection techniques.
 - recover positron tracks which cross the target twice (missing turn analysis)
 - Identify background γ-rays generated when a positron annihilates with an electron on some detector material (annihilation-in-flight (AIF) analysis)
 - refine the alignment procedure of the target and drift chamber system.

Conclusion

- MEG experiment successfully finished data taking 31.08.2013.
- The statistics is double compare to published result. The data analysis will be finished at 2015.
- Expected improvement of sensitivity from 7.7x10⁻¹³ to ~5x10⁻¹³.
- MEG-2 with an order of magnitude better sensitivity is coming (see Angela Papa's talk).

Thanks for your attention!

Backup

Confidence Interval

 Confidence interval calculated with Feldman-Cousins method + profile likelihood ratio ordering

Consistent with null-signal hypotesis