

MERIT Data Analysis

(latest update : 07Oct08)

goto

goto

Contents

- 1. Estimate of beam spot size using emittance measurements and optics
- 2. Alignment information and beam direction
- 3. Impact point calculation from the MTV data
- 4. Pump/probe analysis goto

CERN/MERIT team: Adrian Fabich, J. Lettry, M. Palm,

I. Efthymiopulos

Beam spot size analysis

Survey data after the MERIT run – 18.12.2007

FTN start 304.69540

Data from GEODE database, registered on 15 June 2007

Element Position x Rel. Distance Center v Distance TT2/FTN 1636.84951 2179.54532 2434.22735 FTNQFO.435 Е 48.21100 48.61100 353,30640 1636.11207 2179.85546 2434.22734 49.01100 s 0.80000 FTNTRA.468 E/S 1634.82593 2180.39636 2434.22734 50.40625 1.39525 FTNQDE.450 Е 1629.01792 2182.83899 2434.22733 56.70700 6.30075 57.11700 361.81240 s 1682.26050 2183.15688 2434.22733 57.52700 0.82000 Е FTNDVT.451 1627.44810 2183.49920 2434.22732 58,41000 0.88300 58.91000 363.60540 s 1626.52630 2183.88687 2434.22732 59,41000 1.00000 FTNXCO.453 Е 2434.22732 60.53300 61.03300 365.72840 1625.49113 2184.32222 1.12300 s 1624.56933 2184.70990 2434.22732 61.53300 1.00000

Measurements - 18.12.2007

TT2/FTN

352,9064

353.7064

360.1164

361.3824

362.2024

363.0524

364.0524

Center

48,611

55.421

57.097

58.857

Distance

48.211

49.011

55.421

56.687

57.507

58.357

59.357

Fit parameters: QFO, QDO strengths and locations (within limits)

19.3362

-3.4119

1.9397

10.7838

-1.6025

373.6914

HG-WDO

0.3160

Beam envelope (1-sigma) - ϵ =0.25 (mm.mrad), Dp=0.1%

Without dispersion term

- $\sigma(x) = 1.2$ mm , $\sigma(y) = 1.1$ mm
- 238 J/gr @ 30TP

With dispersion term

- $\sigma(x) = 2.2$ mm , $\sigma(y) = 1.1$ mm
- 130 J/gr @ 30TP

- For proton machines, the emittance is measured by measuring the beam profile in a position of known beam parameters (optics)
 - The convention is to use TWO sigma value

Geometrical emittance:

$$\varepsilon_{protons} = \frac{(2\sigma)^2}{\beta}$$

$$\varepsilon^* = (\beta \gamma) \varepsilon, \beta \gamma = \frac{P_0}{M_0}$$

P [GeV/c]	(βγ)
14.0	14.92
24.0	25.58

Including dispersion

$$\sigma = \sqrt{\varepsilon \cdot \beta} + \left(\left| D_p \right| \frac{\delta p}{p} \right)^2$$

What is measured in the machine

$$\varepsilon_{2\sigma} = f(w_{4\sigma}, \frac{\delta p}{p_{2\sigma}}) = \frac{\left(\frac{w_{4\sigma}}{2}\right)^2 - \left(\left|D_p\right|\frac{\delta p}{p_{2\sigma}}\right)^2}{\beta}$$

September 25, 2008

8

Beam Emittance measurement – 14 GeV/c

Friday 26.10@18:24

Beam intensity:

fws

Beam Emittance measurement – 14 GeV/c

View Option

INJ User

PS User

MDPS

Particule

PROTON

File

opdisp

Beam State

SPARE

Help

MDPS 26 Oct 26 18:26:56 2007

Destination

TT2 D3

Harmonique

H8H16

Beam Emittance measurement – 24 GeV/c

12

Beam Emittance measurement – 24 GeV/c

Summary of measured data

Measured emittances during MERIT operation - (MERIT logbook)

					Inter	isity		Horizontal	Vertical		
	Date	Pbeam	Beam Type	Bef.Eject	TRA126	TRA283	TRA386	4s meas	4s meas	dp/p	
		[GeV/c]			[e]	0]		[mm]	[mm]	[2sigma, 0.1%]	
	26-0ct	13.99	h16	1008.96	695.71	996.75	1037.25	10.62	5.64	1.7	
	26-Oct	13.99	2x2.5e11, DT=1.7us	111.23	55.23	53.2	54.4	8.85	3.86	1.66	
	26-Oct	13.99	2x1.3e12, DT=1.7us	447.07	168.98	222.75	281.25	12.36	6.9	1.76	
	2-Nov	23.97	16x2.5e11	442.8			425	5.9	3.96	1.1	
	2-Nov	23.97	16bunches	608.31	6.26	560.25	632.25	6.18	4.54	1.1	
-											_

Using the formulas of slide #6

Intensity	Pbeam	Eh(2s)	Eh(2s)	Ev(2s)	Ev(2s)
[e13]	[GeV/c]	[mm.mrad]	[norm]	[mm.mrad]	[norm]
1.0090	13.99	1.0244	15.279	0.6856	10.225
0.1112	13.99	0.3971	5.923	0.3211	4.789
0.4428	23.97	0.1827	4.668	0.3380	8.636
0.6080	23.97	0.2498	6.383	0.4442	11.352
0.4471	13.99	1.7306	25.812	1.0261	15.304

in good agreement with the online calculations

Transverse emittance (2s) in TT2

Estimated beam spot at the target (z=0)

■ Using $\delta p/p(2s) = 1.66(1.1)e-3$ for 14(24) GeV/c

Using δp/p(2s) = 1.66(1.1)e-3 for 14(24) GeV/c

Pbeam	Intensity	BetaGamma	Emittance-h(1s)	Dp*dp/p(1s)	Size-h(1s)	Emittance-v(1s)	Dp*dp/p(1s)	Size-v(1s)
[GeV/c]	[Tp]	[]	[mm.mrad]	[<i>mm</i>]	[<i>mm</i>]	[mm.mrad]	[<i>mm</i>]	[<i>mm</i>]
14	1.0	14.925	0.0456	1.508193	1.5951	0.1047	0.1708	0.7178
14	5.0	14.925	0.1208	1.508193	1.7290	0.1453	0.1708	0.8391
14	10.0	14.925	0.2149	1.508193	1.8830	0.1961	0.1708	0.9695
14	15.0	14.925	0.3090	1.508193	2.0253	0.2469	0.1708	1.0844
14	20.0	14.925	0.4030	1.508193	2.1583	0.2977	0.1708	1.1883
14	25.0	14.925	0.4971	1.508193	2.2836	0.3485	0.1708	1.2837
14	30.0	14.925	0.5911	1.508193	2.4023	0.3993	0.1708	1.3726
24	1.0	25.586	0.0266	0.999405	1.0753	0.0610	0.1132	0.5444
24	5.0	25.586	0.0705	0.999405	1.1899	0.0848	0.1132	0.6376
24	10.0	25.586	0.1254	0.999405	1.3192	0.1144	0.1132	0.7377
24	15.0	25.586	0.1802	0.999405	1.4369	0.1440	0.1132	0.8257
24	20.0	25.586	0.2351	0.999405	1.5457	0.1737	0.1132	0.9052
24	25.0	25.586	0.2899	0.999405	1.6474	0.2033	0.1132	0.9783
24	30.0	25.586	0.3448	0.999405	1.7431	0.2329	0.1132	1.0463

Alignment Information and Beam Direction

MERIT beam element survey

Done by CERN geometers (TS/SU) after the run, 18.12.2007

HGWUP - 14(GeV/c) 10.0(TP) y-pos (mm) 100 z = -74.3cm 80 60 40 20 0 -20 -40 -60

 $\Delta y = -5.4153 \text{ mm}$

60

40

20

0

October 9, 2008

nominal position

-40

-20

-60

-80

-80

-100 L. -100

Impact point calculation from the MTV data

- Using the alignment information from the previous slides the beam impact point at the target can be calculated
 - For the H-plane there is no ambiguity
 - For the V-plane we must assume some tilt angle or just the nominal?
- Two sets of MTV data were used:
 - The online measurements as recorded in the log files
 - The data from Goran who analyzed the flag information

Online flag information from the logbook

Flag position from Goran

Online flag data from the logbook

Using the data from Goran

pCVD detector installed at the upstream window, well aligned with the target

According to this, the diamond position is around -12mm.

Conclusions

- The recorder online ("eye") and Goran's analysis results for the flag info basically agree
 - Goran's data show more spread,
 - remaining errors in the analysis that the eye is easier to correct
- The beam seems to be way off for flag-2 (MTV.484)
 - I don't believe the alignment information from the geometers, but I don't understand where the error comes
- Using the alignment information from the previous slides the beam impact point at the target can be estimated but it comes completely off that can't be true
- The signal of the beam diamond (aligned within ±1.5mm to the target) peaks at ~-12mm in the horizontal direction
 - Re-calibrating using that offset, the beam impact point at the upstream window is within <2mm from the nominal
 - However we can't say much on the angle of the beam!!!
- Vertically we seem to be ok

Pump – probe analysis using the diamond detectors

The data used are from the Macrus's files

- Reminder: the detector response for each bunch is calculated as the integral of the recorded signal over a time window
 - typically set to the interbunch spacing
- i.e. no additional correction or more sophisticated algorithm for the signal extraction
- Runs used
 - Use the information from Harold's run list to classify the runs
 - Use Adrian's data for BCT bunch information
 - Rungs are flagged as "bad" and rejected from the analysis if
 - Information is missing (e.g. BCT) or
 - Wrong readings for some bunches

The observed response dependence vs bunch number was corrected

Data from all good runs with Dt(bunch)=131ns

What is plotted is the response per bunch divided by # of protons, normalized to the first bunch

Data from all good runs with Dt(bunch)=131ns

The correction with the BCT data smoothens the observed dependence

Data from all good runs with Dt(bunch)=131ns

The strongest effect is for the beam diamond; the dump detector is rather strange at all cases...

Diamond response vs bunch number

Data from all good runs with Dt(bunch)=262ns

Normally the effect should be reduced with longer interbunch spacing, however the signal is larger...

Data from all good runs with Dt(bunch)=262ns

Normally the effect should be reduced with longer interbunch spacing, however the signal is larger...

Data from all good runs with Dt(bunch)=262ns

Normally the effect should be reduced with longer interbunch spacing, however the signal is larger...

Data from all good runs with Dt(bunch)=526ns

Normally the effect should be reduced with longer interbunch spacing, however the signal is larger...

Data from all good runs with Dt(bunch)=526ns

Normally the effect should be reduced with longer interbunch spacing, however the signal is larger...

Data from all good runs with Dt(bunch)=526ns

Normally the effect should be reduced with longer interbunch spacing, however the signal is larger...

Data from all good runs with Dt(bunch)=795ns

Diamond response vs bunch number

Data from all good runs with Dt(bunch)=131ns - after correction

Similar plots for the other cases, not included here...

Data from pump-probe runs – various Δt (bunch)

What is plotted is:

- where A, B are the correction coefficients evaluated as before for each bunch
- In the present analysis A and B are the same coefficients, i.e. treat 1st bunch of probe as 1st bunch of pump – what would be the alternative???
- If cavitation is formed in the target, then the ratio should increase with the pumpprobe distance (lower denominator)
- Is the difference L-R significant?

Comments – next steps

- Some runs are rejected because no BCT information is available → Adrian is checking that
- Additional correction vs beam position to apply
- Separate analysis vs beam(pump) intensity
 - what info from the beam impact can we get from the cameras?
- Do ratios (e.g. L/R) to improve errors?
- Is 5% "cavitation" something the MFH models predict?