

The R&D Program for Targetry and Capture and C

Neutrino Factory and Muon Collider Source

(BNL E951)

K.T. McDonald Princeton U. Princeton U. BNL, April 19, 2001 HEPAP Subpanel on Long-Range Plans for US HEP http://puhep1.princeton.edu/mumu/target/

Challenges

- \bullet Maximal production of soft pions \rightarrow muons in a megawatt proton beam.
- Capture pions in a 20-T solenoid, followed by a 1.25-T decay

- \bullet A carbon target is feasible for \gtrsim 2 \times 10¹³ protons/pulse.
- \bullet ror $L_p \approx 10$ GeV, factor of 2 advantage with high-Z target.
- Static high-Z target would melt, \Rightarrow Moving target.
- A free mercury jet target may be a viable option, particularly

for very intense proton pulses. **KIRK T. MCDONALD** APRIL 19, 2001

Two Classes of Issues

1. Viability of targetry and capture for a single pulse (E951).

Beam energy deposition may disperse the jet.

Eddy currents may distort the jet as it traverses the magnet.

The Neutrino Factory and Muon Collider Collaboration

2. Long-term viability of the system in a high radiation area (Feasibility Study 2).

- Heating of superconducting magnets.
- Radiation damage to magnets and support structures (and personnel).
- Activation of solids, liquids and gases.

E951 Studies the Single Pulse Issues

Over a sense of the front-end of a front-e neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests;

Test 70-MHz rf cavity $(+ 1.25-T$ magnet) 3 m from target;

Audrey Bernadon,^d David Brashears,ⁱ Kevin Brown,^b Daniel Carminati,^d $MICha$ el Cates," John Corlett, s F Debray, r Adrian Fabich," Kichard C. Fernow," Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,ⁱ Juan C. Gallardo,^b Michael A. Green,^g George A. Greene,^b John R. Haines,ⁱ Jerry Hastings,^b Ahmed Hassanein,^a Colin Johnson,^d Stephen A. Kahn,^b Bruce J. King,^b Harold G. Kirk,b;1 Jacques Lettry, d Vincent LoDestro,b Changguo Lu,j Kirk T. McDonald, j , ² Nikolai V. Mokhov, ^e Alfred Moretti, ^e James H. Norem,^{*a*} Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d Bernard Riemer,ⁱ James Rose,^b Thomas Roser,^b Joseph Scaduto,^b Danial Schaffarzick,^d Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,ⁱ Iuliu Stumer,^b Peter Thieberger,^b James Tsai,^{*i*} Thomas Tsang,^{*b*} Haipeng Wang,^{*b*} Robert Weggel,^{*b*} Albert F. Zeller,^h Yongxiang Zhao^b

^aArgonne National Laboratory, Argonne, IL 60439 b Brookhaven National Laboratory, Upton, NY 11973 c University of California, Los Angeles, CA 90095 d CERN, 1211 Geneva, Switzerland e Fermi National Laboratory, Batavia, IL 60510 f Grenoble High Magnetic Field Laboratory, 38042 Grenoble, france gLawrence Berkeley National Laboratory, Berkeley, CA 94720 h Michigan State University, East Lansing, MI 48824</sup> ^{*i*}Oak Ridge National Laboratory, Oak Ridge, TN 37831 ^jPrinceton University, Princeton, NJ 08544

¹Pro ject Manager. Email: kirk@electron.cap.bnl.gov 2Spokesperson. Email: mcdonald@puphep.princeton.edu KIRK T. MCDONALD APRIL 19, 2001

Solid Target Tests (5e12 ppp, ²⁴ GeV, ¹⁰⁰ ns)

Carbon, aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented

with fiberoptic strain sensors.

Passive Mercury Target Tests

Exposures of 150 ns at $t = 0, 0.2, 0.4, 0.6$ and 0.8 msec, \mathbf{r} protons, it is protons, it is explanated by a slowed by a slowed by a slowed by air dragon by air dragon by a slowed by a slowed

(Cernoble High Magnetic Field Laboratory) (Cernoble High Magnetic Field Laboratory) (Cernoble High Magnetic Fie

Tests of ^a Mercury Jet in ^a ¹³ ^T Magnetic Field

1 cm diameter jet, $v = 4.6$ m/s, $B = 0$ T:

1 cm diameter jet, $v = 4.0$ m/s, $B = 13$ T:

 \Rightarrow Damping of surface tension waves (Rayleigh instability).

continuing R&D Program R&D Pro

- Continue tests of targets in beam, and mercury jets in high magnetic fields.
- Complete tests of sublimation of carbon in helium atmosphere.
- Test mercury jet in beam $+20$ T magnetic field. \Rightarrow Build 20-T pulsed magnet system at BNL.
- Study alternative concepts such as rotating band target.
- \bullet Study issues of fabrication of 20-T hybrid superconducting/resistive solenoid for use in a high-radiation area.
- Validate neutron fluxes above 20 MeV via beam tests.
- Validate pion production yields in the target system.
- Study use of rf cavities very near target for phase rotation.