

The R&D Program for Targetry and Capture at a

Neutrino Factory and Muon Collider Source

(BNL E951)

K.T. McDonald

Princeton U.

BNL, April 19, 2001

HEPAP Subpanel on Long-Range Plans for US HEP

http://puhep1.princeton.edu/mumu/target/

Challenges

- Maximal production of soft pions → muons in a megawatt proton beam.
- Capture pions in a 20-T solenoid, followed by a 1.25-T decay channel.

- A carbon target is feasible for $\lesssim 2 \times 10^{13}$ protons/pulse.
- For $E_p \gtrsim 16$ GeV, factor of 2 advantage with high-Z target.
- Static high-Z target would melt, \Rightarrow Moving target.
- A free mercury jet target may be a viable option, particularly for very intense proton pulses. 2

KIRK T. McDonald April 19, 2001

Two Classes of Issues

- 1. Viability of targetry and capture for a single pulse (E951).
 - Beam energy deposition may disperse the jet.

• Eddy currents may distort the jet as it traverses the magnet.

2. Long-term viability of the system in a high radiation area (Feasibility Study 2).

- Heating of superconducting magnets.
- Radiation damage to magnets and support structures (and personnel).
- Activation of solids, liquids and gases.

E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) 3 m from target; Characterize pion yield.

The E951 Collaboration

Audrey Bernadon,^d David Brashears,ⁱ Kevin Brown,^b Daniel Carminati,^d Michael Cates,ⁱ John Corlett,^g F Debray,^f Adrian Fabich,^d Richard C. Fernow,^b Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,ⁱ Juan C. Gallardo,^b Michael A. Green,^g George A. Greene,^b John R. Haines,ⁱ Jerry Hastings,^b Ahmed Hassanein,^a Colin Johnson,^d Stephen A. Kahn,^b Bruce J. King,^b Harold G. Kirk,^{b,1} Jacques Lettry,^d Vincent LoDestro,^b Changguo Lu,^j Kirk T. McDonald,^{j,2} Nikolai V. Mokhov,^e Alfred Moretti,^e James H. Norem,^a Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d Bernard Riemer,ⁱ James Rose,^b Thomas Roser,^b Joseph Scaduto,^b Danial Schaffarzick,^d Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,ⁱ Iuliu Stumer,^b Peter Thieberger,^b James Tsai,ⁱ Thomas Tsang,^b Haipeng Wang,^b Robert Weggel,^b Albert F. Zeller,^h Yongxiang Zhao^b

^aArgonne National Laboratory, Argonne, IL 60439

 $[^]bB$ rookhaven National Laboratory, Upton, NY 11973

^cUniversity of California, Los Angeles, CA 90095

^dCERN, 1211 Geneva, Switzerland

^eFermi National Laboratory, Batavia, IL 60510

^fGrenoble High Magnetic Field Laboratory, 38042 Grenoble, france

^gLawrence Berkeley National Laboratory, Berkeley, CA 94720

^hMichigan State University, East Lansing, MI 48824

ⁱOak Ridge National Laboratory, Oak Ridge, TN 37831

^jPrinceton University, Princeton, NJ 08544

¹Project Manager. Email: kirk@electron.cap.bnl.gov

²Spokesperson. Email: mcdonald@puphep.princeton.edu

Solid Target Tests (5e12 ppp, 24 GeV, 100 ns)

Carbon, aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented

with fiberoptic strain sensors.

Passive Mercury Target Tests

Exposures of 25 μ s at t = 0, 0.5, 1.6, 3.4 msec, $\Rightarrow v_{\rm splash} \approx 20 - 40$ m/s:

Exposures of 150 ns at t = 0, 0, 2, 0, 4, 0, 6 and 0.8 msec, 4e12 protons, $\Rightarrow v_{\text{splash}} \approx 75 \text{ m/s}$ (then slowed by air drag):

KIRK T. McDonald April 19, 2001

Tests of a Mercury Jet in a 13 T Magnetic Field (CERN/Grenoble High Magnetic Field Laboratory)

1 cm diameter jet, v = 4.6 m/s, B = 0 T:

1 cm diameter jet, v = 4.0 m/s, B = 13 T:

⇒ Damping of surface tension waves (Rayleigh instability).

Continuing R&D Program

- Continue tests of targets in beam, and mercury jets in high magnetic fields.
- Complete tests of sublimation of carbon in helium atmosphere.
- Test mercury jet in beam + 20 T magnetic field.
 - \Rightarrow Build 20-T pulsed magnet system at BNL.
- Study alternative concepts such as rotating band target.
- Study issues of fabrication of 20-T hybrid superconducting/resistive solenoid for use in a high-radiation area.
- Validate neutron fluxes above 20 MeV via beam tests.
- Validate pion production yields in the target system.
- Study use of rf cavities very near target for phase rotation.