Target optimisation for the Neutrino Factory capture section (IPAC13 paper++ and updates)

OLE MARTIN HANSEN (CERN & UNIV. OF OSLO)

ILIAS EFTHYMIOPOULOS (CERN)

Target phone meeting

Optimisation studies

• MC Simulations:

- G4beamline
- Method:
- Two solenoid configurations and magnetic field tapering
 - 3SOL
 - ST2A
- Investigating particle production and muon yield when varying the beam's entry position and entry angle on the target
- Mercury jet target shape fluctuation in a high magnetic field
- Investigation of the proton beam/target interaction region
- Comparing the muon flux at z=50 m and the muon+pion flux at z=0 m
 - MUON ACCEPTANCE CUTS ARE APPLIED, I.E. ONLY MUONS THAT WILL BE SUCCESSFULLY TRANSPORTED TO THE MUON ACCELERATOR

From the G4BL-viewer

Target phone meeting

- 3sol and ST2a have 20 T capture magnets and tapers down to 1.5 T (3sol) and 1.75 T (ST2a)
 - SC1/2/3 are superconductors producing the magnetic field
 - ST2a field from standard fieldmap
 - 3sol field made from magnets and tuning currents in g4bl

Target phone meeting

Beam and Target

• 8 GeV beam kinetic energy

- 10⁵ protons on target
- σ=1.5 mm
- Standard definition of the beam \rightarrow

Mercury target

- Radius=5 mm
- Tilted $\theta_{\rm T}$ =96.68 mrad with respect to the z-axis
- The target is a long strait cylinder ~2.5 m (no gravity) centred at z=-375 mm
- The polar angle between beam and target, θ_{BT} =30 mrad (z=-375) for the first study and varies θ_{BT} =[20, 35] mrad in the later studies
- The azimuth angle in the target reference frame $\phi \in [0,312]$ varies in steps of 24° and is later fixed to 0°

Acceptance cuts

• Ecalc9f was used to find the "good" muons after the front-end

Momentum	Transverse acceptance	Longitudinal acceptance cuts
[MeV/c]	[mrad]	[mrad]
100 <p<sub>z<300</p<sub>	A _T <0.150	A _L <0.030

- Particle ID was then used to find the time, momentum and position distribution of the good muons at z=0 m and z=50 m
- The muon count in these intervals of momentum, time and position is used as a measure of performance

Momentum	Transverse momentum	Time	Radius
[MeV/c]	[MeV/c]	[ns]	[mm]
100 <pz<300< td=""><td>p_T<50</td><td>160<t<240< td=""><td>r<200</td></t<240<></td></pz<300<>	p _T <50	160 <t<240< td=""><td>r<200</td></t<240<>	r<200

Mercury jet shape fluctuation

- The effect on particle production by changing the mercury jet shape from a cylinder to an elliptic cylinder is studied
- From mass conservation the cross sectional area of the jet is conserved
 - The height of the jet is set to be 1.2 x the radius of the cylinder, a=6 mm, and the width calculated to b=4.2 mm
 - In G4BL the elliptical cylinder is approximated by three overlapping cylinders →

Results, jet shape fluctuation

- $\phi \in [0, 312]$ in steps of 24°
- $\theta_{\rm BT}$ =30 mrad
- The highest particle count can be found between 72° and 144°
- Slightly decreased particle count for the elliptic cylinder

- The maximum difference when varying ϕ is 5.5 % for both cases
- Error bars are statistical

Proton beam trajectory in the jet

Jet is now cylindrical

• These figures show the case from the previous slide for $\varphi=0^{\circ}$

• Beam initial z-position is -750 mm

- Upper figure shows the proton/jet interaction distribution in the y-direction (vertical)
- Lower figure shows where each individual proton enters and exits or interacts with the jet
- Beam starts interacting already at z~680 mm, which gives the skew and off centred distribution in y, because of the tilted jet
- Fix: move distribution peak closer to the origin (beam pipe centre)

Redefining the beam

- The vector definition of the beam can readily be shifted in space
 Assume perfectly defined point-size proton
- Select a point on the surface of the target for the protons to hit, (x_o',y_o',z_o') in the target reference frame
 - × r= $\sqrt{\Delta x'^2 + \Delta y'^2}$ is the radius of the target and the length from the target frame origin is Δz'
 - Do a rotation around the x'-axis to find the coordinates of (x_0, y_0, z_0) , in the Neutrino Factory reference frame, and shift the initial position of the beam accordingly
- The angles ϕ , θ_T and θ_{BT} are now the angles at the surface of the target instead of the centre
- \$\overline{0}\$' defines the azimuth angle for finding (x₀',y₀')

Proton/jet interaction y-position distribution

- θ_{BT} =30 mrad, φ =0°, φ '=90° hit on top of the jet (x₀=0, y₀= r), z₀' varies ϵ [-150, 0] mm
- Left: $z_0'=-75$ mm, shows where the beam hits the jet
- Right: three settings for z_o', the "original" z_o'≈-150 mm is shown in black and the peak is off-centred by about 15 mm
- The two other histograms (red and blue) show how the peak is shifted with increasing z_o'

Target phone meeting

Proton/jet interaction region

- The median is used as a measure of the central tendency of the distribution since it's skewed
- The highest particle count at z=0 mm is found when the median is \approx -4 mm
- The increased particle count is 10.5%
 - Increasing z_o' brings the detector closer to the interaction points and an increased particle count should be expected by the fact itself
- Therefore → Acceptance cuts

Increasing the pathlength

13

- Fix z_o'=-25 mm, which gives the median of -4 mm and the highest particle count
- Variation of $\theta_{BT} \in [20, 35]$ mrad
- A longer proton trajectory in the jet (*pathlength*) does increase the particle count at z=0 mm
- Particle count increase of 6.8%

Increasing the pathlength (cont.)

- The pathlength in the jet is shown on the right for z_o'=-75 mm
- Most of the protons interact with the jet at the jet-surface, pathlength=0 mm

Short summary

15

- The production of the secondary particles has been centred in the beam pipe and the pathlength was increased
- The increase of the particle count is 6.8 % (from centring) and 10.5 % (from increased pathlength) giving a total increase of 17.3% at z=0 mm without considering acceptance cuts (good muons)

• Next slides: only good muons are accepted

Short reminder

16

- 3sol setup used and compared with the ST2a
- 'not-optimised' means the maximum values when only ϕ was varied, jet circular and θ_{BT} =30 mrad

The muon yield

- Increase of 5.5% (16%) on the muon yield compared to the non-optimised 3sol (ST2a)
- The maximum muon yield is found when $\theta_{BT}=25$ mrad
- Increase of 5.5% (16%) on the muon yield compared to the non-optimised 3sol (ST2a)

Updates, production and muon beam centre

- Centring the particle production also centres the pions and muons in the beam pipe
- The distribution maximum for all protons and muons + pions coincide with the distribution maximum for the good particles
- The solid lines show all particles and dashed lines show good particles
- Both distributions have heavier left tales, but the muon + pion distribution is less negative skew (explained by the pathlength plot where the majority of pions are produce at the jetsurface)

Future

19

More work on the pathlength study

× Let the beam enter the jet from other directions

× Change jet shape to include gravity

• Energy deposition study - 3sol vs. ST2a