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Why Neutrino Experiments ?

• Over the last decade an incredible discovery has Over the last decade an incredible discovery has 
emerged in particle physics:  Neutrinos have tiny 
(sub-eV) masses.

• We don’t know what new beyond-the-Standard-
Model physics is responsible for the tiny masses, but 
it’  b d t  b  thi  itiit’s bound to be something exciting.

• The long-term goal for the neutrino program is to h  ong t rm goa  for th  n utr no program s to 
answer the question:
What new physics is responsible for sub-eV neutrino 

 
p y p

masses ?
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Which Neutrino Measurements ?

• We don’t know exactly what we need to do to pin 
down the physics responsible for neutrino masses  down the physics responsible for neutrino masses, 
but there is a broad consensus that the first steps 
for the accelerator-based neutrino program are:

Measure the unknown mixing angle  (is it non zero) ?– Measure the unknown mixing angle 13 (is it non-zero) ?
– Determine the pattern of neutrino masses (mass hierarchy)
– Find or constrain CP violation in the neutrino sector 

(measure or constrain the CP phase )(measure or constrain the CP phase )

• The less clear longer-term steps may involve finding 
more neutrino surprises  will probably  involve more neutrino surprises, will probably  involve 
guidance from other experimental results (LHC, CLV, 
neutrinoless   …), & will almost certainly involve 
p isi n n t in  p m t  m s m nts:precision neutrino parameter measurements:
– Do any of the parameters have special values ?
– Suggestive relationships between parameters ?

WE 
NEED 

– Is 3 flavor mixing the whole story ? CLUES
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A New Type of Neutrino Beam

● A Neutrino Factory would provide a new type of 
neutrino beam, made from muon decays (c.f. 
charged pion decays for conventional neutrino 
beamsbeams.

● Since muons live 100 longer than charged pions, S nce muons l ve 00 longer than charged p ons, 
to be efficient a linear muon decay channel would 
have to be  tens of km long, hence:

O(1021) muon decays / year
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Neutrino Factory Schematic

• Proton Source
– Beam power  4MW
– E  few GeV
– Short bunches ( 3ns)

4 MW
Proton
Source

Same as for 
Muon Collider: 
see BobShort bunches ( 3ns)

• Target, capture & decay
– Create , decay into 

Source

Hg-Jet 
TargetDecay 

see Bob 
Palmer’s talk

• Bunching & Phase Rotation
– Capture into bunches
– Reduce E

Channel

I iti l

Buncher


Reduce E
• Cooling (cost effective 

but not mandatory)
U I i ti C li

Initial 
Cooler Storage

Ring ~ 1

10 20– Use Ionization Cooling 
to reduce transverse 
emittance to fit within 

l t

Pre Accel
-erator

Acceleration

1 km5-10 
GeV

10-20
GeV

an accelerator 1.5-5 GeV
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Beam Properties 

- Well known beam flux Well known beam flux 
& spectra (low syst-
ematic uncertainties)

- Can measure spectra 
for events tagged by 
right-sign muons  

  %50%50  

eee
right sign muons, 
wrong-sign muons, 
electrons, , or 
no leptons; and do all this when there are positive muons 

 
%50%50  

eee
no leptons; and do all this when there are positive muons 
stored and when there are negative muons stored  a wealth 
of information. 

- Can search for e oscillations with very low 
backgrounds (wrong-sign muon signature)g g g g
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Key Experimental Signature 

 Measuring the transitions e   is crucial for the future 
neutrino oscillation programneutrino oscillation program.
 With a conventional neutrino beam this means measuring  e 
oscillations, and hence e appearance. With a NF we can measure 

ll  & h    l  b k d

  
CC e   oscillations at a 

e   oscillations & hence e appearance  very low backgrounds

  e e  → 

↓
neutrino factory result in  
appearance of a “wrong-
sign” muon … one with ↓

→ -

CC

g
opposite charge to those 
stored in the ring:

 Backgrounds to the detection of a wrong-sign muon are 
expected to be at the 10-4 level → background-free e  
oscillations with probabilities of O(10-4) can be measured !
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Neutrino Factory Studies 

• Over the last decade a series of design studies 
h  d l d th  NF thave developed the NF concept:
– First Generation - “Feasibility”:

• Feasibility Study 1 (FNAL 2000)• Feasibility Study 1 (FNAL 2000)
• Japanese Study 1 (2001)
• CERN Study (2004)

– Second Generation – performance & cost-reduction:
• Study 2 (BNL 2001): performance
• Studies 2a & 2b (2005): costStudies 2a & 2b (2005): cost

– Third Generation – International:
• International Scoping Study: selected 25 GeV NF 

(RAL 2006) (MOST RECENT COMPLETED STUDY)(RAL 2006) (MOST RECENT COMPLETED STUDY)
• International Design Study: seeks to deliver a Reference 

Design report by ~2011  (ONGOING STUDY)
• Low Energy NF  (NEW DEVELOPMENT)
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International Scoping Study Reports

arXiv: 0712 4129arXiv: 0712 4129 arXiv: 0712.4129 arXiv: 0712.4129 arXiv: 0712.4129 arXiv: 0712.4129 

arXiv: 0802.4023v1 arXiv: 0802.4023v1 

• Now published:Now published:
– Physics report : Rep. Prog. Phys
– Accelerator report: JINST 4:P07001,2009
– Detector: JINST 4:T05001 2009Detector: JINST 4:T05001,2009
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ISS Physics Results: 13 Sensitivity 

•“Conservative” NF
(right edges in plots)

3observation
(right edges in plots)

– 1021 muon decays/yr
– 4 years x 50 KT

E  50 G V f – E = 50 GeV
– L = 4000 km

•“Optimized” NF
(l ft d  i  l t ) ac

tio
n 

of
(left edges in plots)

– 1021 muon decays/yr
– 5 years x 50 KT x 2

Fr
a

– E = 20 GeV
– L = 4000 & 7500 km

sin22
10-5 10-4 10-3       10-2 10-1

sin2213

Even if 13 = 0 at some high mass scale, radiative corrections are 
lik l t k it l th th li iti NF iti itlikely to make it larger than the limiting NF sensitivity
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ISS Physics Results: Mass Hierarchy

Mass Hierarchy determined at  3 CPV established at  3

of
 

of
 

ac
tio

n 

ac
tio

n 

Fr
a

Fr
a

sin2213sin2213

10-5 10-4 10-3       10-2 10-110-5 10-4 10-3       10-2 10-1

sin 213sin 213

If 13 is small, an ~20-25 GeV  Neutrino Factory provides 
exquisite sensitivity that goes well beyond the capability of 
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What if 13 Large ?

Geer, Mena, & Pascoli, Phys. Rev. D75, 093001, (2007);  Bross, Ellis, Geer, Mena,&  Pascoli, Phys. Rev. D77, 093012 (2008)
Phys. Rev. Special Topics AB,  Ankenbrandt, Bogacz, Bross, Geer, Johnstone, Neuffer, Popovic – in press

•New ideas on how to affordably magnetize a very large low Z 
fully active detector have opened the possibility of a low energy 
NF, ideal it 13 is “large”

•4 GeV NF design simulated → 
1.4 x 1021 useful decays/year of 
each sign each sign 

•For present physics studies, assume:
• 4.5 GeV NF4.5 GeV NF
•1.4 x 1021 useful decays/year of 
each sign

•background level of 10-3
Totally Active Scintillator Detector

15m long scintillators•background level of 10 3

•20KT detector (Fid. Mass)
•10 year run

15m long scintillators 
triangular cross-section 
(base=3cm, ht=1.5cm)

B = 0.5 T
•L = 1280 km (FNAL-Homestake)
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3Discovery Potential

Bross, Ellis, Geer, Martinez, Li, Pascoli & Mena

 o
f 

Mac
tio

n

CPV13 ≠ 0
Mass

HierarchyFr
a

10-4 10-3     10-210-4 10-3     10-210-4 10-3     10-2

sin2213 sin2213 sin2213

•A Low Energy NF with a FNAL – Homestake baseline 
has discovery sensitivity down to  sin2213 = O(10-3 –
10-4) !10 4) !
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Low Energy NF Precision

B

If 13 is “large”, a 

Bross, Ellis, G

13=5o 

ee
s 0.4 If 13 is large , a 

low energy NF 
would enable 
precision 

Geer, M
artinde

gr
e

0.3

precision 
measurements

nez, Li, Pasco 1
3
d 0.2

0.1 oli & M
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Exposure  (1023 kt-decays)
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Low Energy NF Precision
es 15
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Neutrino Factory R&D

•Neutrino Factory R&D  pursued since 1997. 
Si  i   t d i  th  N t i  • Since, in our present designs, the Neutrino 

Factory and Muon Collider have common front ends 
(up to & including the initial cooling channel), much (up to & including the initial cooling channel), much 
of the R&D is in common.
•See Bob Palmer’s Muon Collider talk for proton 

i   b hi  & h  i  requirements, target, bunching & phase rotation, 
and cooling design and R&D. 
• Key experiments:• Key experiments:

MERIT:   Target demonstration – complete
MuCool:    RF in mag. fields – critical, ongoingg , g g
MICE: Cooling channel systems test, ongoing
EMMA:     Promising new acceleration scheme

test  in preparationtest, in preparation

Steve Geer        High Intensity Proton Accelerators          Fermilab            19  October  2009                      16



Targetry

• Need proton beam power of 4MW & short bunches (3ns)

• Optimum proton beam energy = 10 ± 5 GeV (ISS study) but at 
fixed power muon yield drops slowly with energy - lose ~30% 
for E=120 GeV (Mokhov)

• A 4MW target station design 
study was part of “Neutrino 
Factory Study 1” in 2000 
ORNL/TM2001/124ORNL/TM2001/124

• Facility studied was 49m long = 
target hall & decay channel, g y ,
shielding, solenoids, remote 
handling & target systems. 

• Target: liquid Hg jet inside 20T 

4MW Target Station Design

Target: liquid Hg jet inside 20T 
solenoid, identified as one of 
the main Neutrino Factory 
challenges requiring proof-of-

i i l  d i
g q g p

principle demonstration.
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The MERIT Experiment at CERN

• The MERIT experiment was 
d si n d s pr f f principl  designed as proof-of-principle 
demonstration of a liquid Hg 
jet target in high-field solenoid.

• In Fall 2007 MERIT ran at the 
CERN PS and successfully 
demonstrated a  liquid Hg jet 
injected into a 15T solenoid  & injected into a 15T solenoid, & 
hit with a suitably intense beam 
(115 KJ / pulse !). 

MERcury
I tIntense
Target
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MERIT RESULTS

• Jet disrupted on a ms timescale (disruption length <28 cm ~ 2 
i  l h  Th  j   b d  bli h i lf f  

p p g
int. lengths. The jet was observed to re-establish itself after 
15ms … before the next beam pulse arrives → rep. rate 70Hz. 

• Preliminary analysis suggests this target technology is good Preliminary analysis suggests this target technology is good 
for beams up >8 MW !

1 cm

Hg jet in a 15T solenoid
observed with a high-g

speed camera
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Bunching, Phase Rotation & Cooling

• After drifting down a  
57m long pion decay 57m long pion decay 
channel, the muons 
have developed a 
time-energy 

l ti  A l  
y

correlation. A clever 
arrangement of RF 
cavities captures the 
muons in bunches & muons in bunches & 
then reduces their 
energy spread.

G
eV

) 0.2

Trans. emittance
• An ionization cooling 

channel reduces 
trans. phase space of 
th   l ti  

0.1

μ/
p 
(8
G

/p within
acceptancethe muon population 

to fit within the 
accelerator 
acceptance

0

μ p

100                  200
Distance along channel (m)

SIMULATION

0
acceptance. Distance along channel  (m)
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Ionization Cooling

 Must cool fast (before muons decay)

 Muons lose energy by in material (dE/dx). 
Re-accelerate in longitudinal direction 
reduce transverse phase space (emittance)  reduce transverse phase space (emittance). 
Coulomb scattering heats beam  low Z
absorber. Hydrogen is best, but LiH also 
OK f  th  l  p t f th  lin  h nn lOK for the early part of the cooling channel.
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MuCool

 Developing & bench testing
cooling channel componentscooling channel components

MuCool Test Area at end of 
FNAL linac is a unique facility:FNAL linac is a unique facility:

-Liquid H2 handling
-RF power at 805 MHz
RF power at 201 MHz-RF power at 201 MHz

-5T solenoid (805 MHz fits 
in bore)
B  f  li  ( )-Beam from linac (soon)

MTA
New beamline Liq. H2 absorber

MTA
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RF in Magnetic Fields

 When vac. copper cavities operate in multi Tesla co-axial 
mag  field  the maximum operating gradient is reduced

 Effect is not seen in 
cavities filled with high 

mag. field, the maximum operating gradient is reduced.

g
pressure hydrogen gas –
possible solution (but 
needs to be tested in a 

>2X Reduction @ 
required field

needs to be tested in a 
beam – coming soon)

 Other possible ways to q  Other possible ways to 
mitigate effect:

-special surfaces (e.g. 
beryllium)

Peak Magnetic Field in T at the Window

beryllium)
-Surface treatment 
(e.g. ALD)

Magnetic insulation g - Magnetic insulation 
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MICE

GOALS: Build a section of cooling channel capable of giving the 
desired performance for a Neutrino Factory y
& test in a muon beam.  Measure 
performance in various 
modes of operation.



 Multi-stage experiment Multi stage experiment.

 First stage being 
commissioned now.

 Anticipate final stage 
complete by ~2011
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Acceleration

• ISS Scheme
– Pre-accelerator uses 201 MHz 

SCRF cavities with 17 MV/m 
(11 MV/m demonstrated at(11 MV/m demonstrated at 
Cornell)

– Non-scaling FFAG proof-of-
i i l R&D dprinciple R&D under prep-

aration  EMMA experiment 
at Daresbury

• Low Energy NF
– Pre-accelerator uses 201 MHzPre accelerator uses 201 MHz 

SCRF cavities with 12 MV/m –
performance still OK
O RLA t t t 4 G V
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FINAL REMARKS

•International Scoping Study prepared the way for 
th  t t  Th  I t ti l D i  St dthe next step – The International Design Study
•The IDS aspires to deliver a NF Reference Design
Report (RDR) by 2012Report (RDR) by 2012.
• If the community wishes, after a few more years 
of preconstruction R&D, neutrino factory p y
construction could begin as early as the late 2010’s
• The NF & MC front-ends are, in present designs, 
the same  and require a 4MW (or more) proton the same … and require a 4MW (or more) proton 
source providing 3ns long (or less) bunches with a 
rep rate of a few x 10Hz. We believe we have the p
target technology for this.
• Realizing a NF would mitigate many of the 
technical risks ass ciated ith realizin  a MCtechnical risks associated with realizing a MC
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A Staged Muon Vision

detector

Muon
detector


Collider
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