Front-End Alignment and Tolerance

Gersende Prior (University of Canterbury) Feb 12, 2013

Front-End meetings

12 February 2013

Summary

• G4BL version 2.0 front-end lattice:

- bugs correction from the IDR lattice (e.g. Be windows made of Be and not LiH)
- longer cooling section to accommodate required spacing for RF and magnets
- no chicane yet

\rightarrow version v2.1 available but not tested yet

• Geometry (version 2.0):

- no physical magnets (G4BL is reading fieldmaps that were produced using ICOOL)
- fieldmaps for capture, matcher and cooler
- Constant (Bz = 1.5 T) field for drift, buncher and rotator (fieldexpr command)
- RF cavities (pillbox) and windows (Be, LiH) volumes defined
- Beam:
 - beam from MARS (ST2a) simulation 8 GeV $4x10^5$ pot, negative pions/kaons/muons
 - 2 (or 3 ?) ns smearing (both 2 ns and 3 ns beams are the same)
 - only using the first 10000 particles (a run takes ~20 min)

Lattice description

- Names and lengths (from target to acceleration system):
 - Capture 18.9 m
 - Drift 60.7 m
 - Buncher 33 m
 - Rotator 42 m
 - Matcher 6 m
 - Cooler 105 m (IDR) 227.04 m (v2.0)
- Cooler length (from discussion with Chris):
 - 30% more cooler in comparison with the IDR version to accommodate the additional RF spacing required
 - rest is additional cooling to test the lattice

\rightarrow ~182 m of cooling (tbc)

• Acceptance criteria:

- N is the total number of muons at a given z.
- n_1 is the number of muons that passed the ecalc9f cuts (100 < pz < 300 MeV/c, $A_T = 30$ mm, $A_L = 150$ mm at a given z.

Misalignment study

Changing the magnetic field direction in the drift-buncher-rotator:

- solenoid symmetry can choose Bx = 0, $By = 1.5 x \sin \phi Bz = 1.5 x \cos \phi$
- misalignment in a volume of 1 m length in z
- choosing different locations in z where to place the misaligned field
- $\phi = 1^{\circ}$ (approx. 2 cm vertical tilt for a 1m-long magnet)
- Maximum tolerance:
 - from previous discussion is was said that 1-5% drop in the number of muons in the acceptance is the maximum tolerance

But:

- need to verify that this is within the uncertainties on the number of muons
- this is within the mechanical tolerance for magnet positioning

 \rightarrow Will use real magnets geometry and try other misalignments configuration once the maximum tolerance is defined

Total number of muons

Total number of muons is up to 5% lower in version 2.0 compared to the IDR lattice.

Start to drop at z = 100 m (second half of buncher).

 \rightarrow Need to find out why.

Muons within acceptance

Number of muons in the acceptance is ~20% lower in version 2.0 compared to the IDR lattice.

Start to drop at z = 150 m (second half of rotator).

 \rightarrow Need to find out why.

Transmission

Number of muons "transmitted" is 30% lower in version 2.0 compared to the IDR lattice.

Starts at $z \sim 175$ m (beginning of cooler).

 \rightarrow Need to find out why.

Difference

Comparison between number of muons accepted in version 2.0 and different misalignment configurations.

Misalignment in the drift or the buncher have equivalent results (~20%).

Misalignment in the rotator less dramatic ($\sim 10\%$).

But in all the cases 1° difference in angle (= 2 cm vertical misalignment for a 1 m long magnet) is already way too much.

Todo

- Need to cross-check that the origin of the difference seen between the IDR lattice and version 2.0 is well understood.
- Verify/plot the uncertainties on the number of muons (total/accepted/transmission/difference).
- Get a rough estimate on what a magnet survey accuracy is (depend on magnet size and location).

will constraint the study to mechanical tolerance and simulation accuracy.

- Use real magnet geometry for the capture, matcher and cooler sections.
- Work on the RF-electric field misalignment.