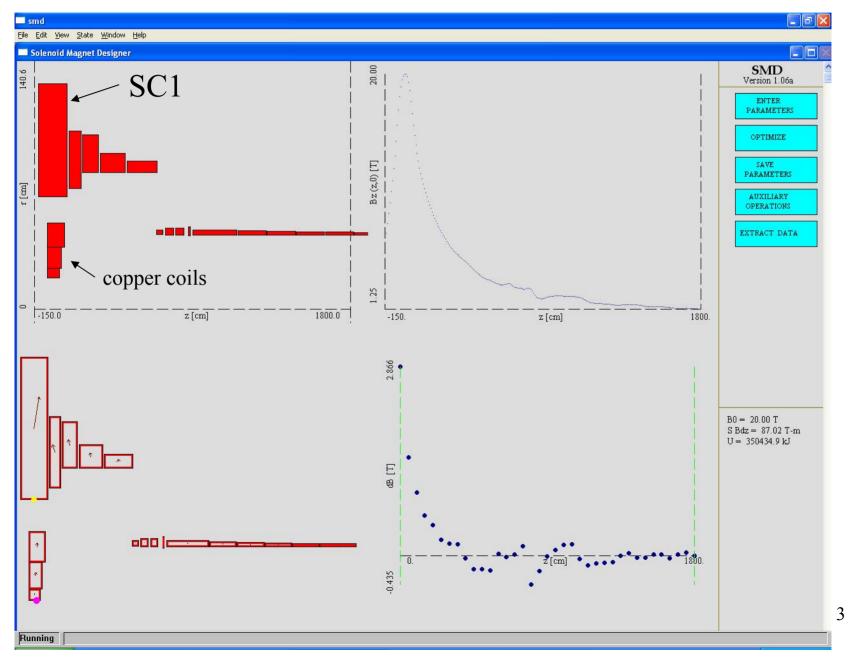


New capture solenoid design

R.C. Fernow BNL

MAP Friday Meeting


29 October 2010

Introduction

• protecting the superconducting magnets near the target from radiation is one of the major unresolved R&D issues for MAP

- many problems need to be addressed
 - 1) average heat load on 4K cryogenic system
 - 2) peak heat fluctuations causing quenches
 - 3) limited lifetime due to radiation damage
 - 4) constraining very large forces on magnets
- new approach discussed here to alleviating problems 1-3 increase inner radius of magnets near target allows additional shielding between target and coils

Study 2 design

Problems with Study 2 design

- \bullet cryogenic heat load on SC1 $\sim 20~kW$ at 4 K
- lifetime from radiation damage ~4 years for 4 MW beam
- enormous force on iron plug
- iron plug blocks access to front of target
- \rightarrow need <u>new design</u>
- larger inner radius to allow more shielding
- longer flat region over target to eliminate Fe plug
- new taper to 1.5 T used in IDS front end design

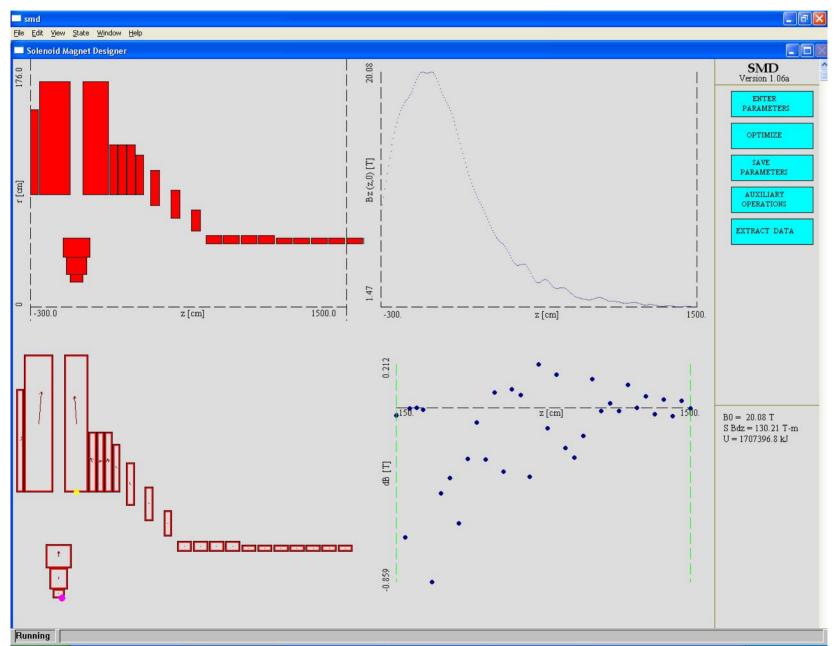
Field profiles

• "end" of target defined as z = 0

Study 2

had iron plug to smooth field near jet entrance downfield profile

20 T at z = -30 cm falls to 1.25 T at 18 m


$$B(z) = \frac{B_o}{1+k z}$$

IDS-NF

uses Kevin Paul profile (flat at end points) 20 T at z = -37 cm falls to 1.5 T at 15 m

 $B(z) = \frac{\Phi / \pi}{a_o + a_2 z^2 + a_3 z^3}$

New design ids80d

6

Comparison

	r _{inner} [cm]	B _p [T]	hoop [MPa]	F _z [MNt]	δB _o /B _o [%]	flat [cm]
Study 2	64	20.2	217	168	5	60
ids80d	80	20.2	376	282	0.4	75

• disadvantage is larger hoop stress and forces

Summary

- have new capture magnet design with additional space for shielding
- need MARS studies to determine reduction in heat deposition
- need engineering analysis of increased forces on magnets
- another alternative

replace Cu coils with HTS layer at 80 cm new design by Bob Weggel

• miniworkshop on target capture systems organized by Harold Kirk at BNL on November 29-30