Titanium Alloy Radiation Damage Tests

Aida Amroussia, PhD Candidate¹ Pr. Carl J Boehlert¹ Dr. Frederique Pellemoine² Pr. Wolfgang Mittig²

> ¹Michigan State University ²Facility For Rare Isotope Beams

May 19, 2015

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Outline

- 1. Introduction
- 2. Microstructure characterization
- 3. Experimental Methods
- 4. Irradiation damage in Ti-6Al-4V: Literature review
- 5. Microstructure characterization
- 6. Hardness measurements
- 7. Conclusion

Facility for Rare Isotope Beams at Michigan State University

- The FRIB at Michigan State University is a new generation accelerator with high power heavy ion beams.
- It will provide primary beams from O to U with an energy of 200 MeV/u for heavy ion beams, and higher energies for lighter beams.
- Beam Dump
 - Up to 325 kW

Beam

FRIB Beam Dump

• Water-filled rotating drum beam dump chosen for **FRIB** baseline

FRIB conditions: •

Beam Dump lifetime of 1 year (5500 h) desired

 \blacktriangleright Estimated cumulative dpa after one year of use ~9 dpa with a fluence of 10¹⁵ ions.cm⁻²

Se from 0.08 keV/nm (with O beam) to 12.6 keV/nm (with U beam)

- Ti-6Al-4V and Ti-6Al-4V-1B were chosen as candidate materials ۲
- The current study addresses the radiation damage challenge and

focuses on understanding Swift Heavy Ion (SHI) effects on Ti-alloy that can limit beam dump lifetime

Irradiation set up

- Two main irradiation experiments with Ti-6Al-4V and Ti-6Al-4V-1B samples were performed at the IRRSUD beamline facility at the GANIL-CIMAP Laboratory, Caen France.
- The IRRSUD beam line was chosen due to comparable S_e values to the FRIB conditions (0.08 -13 keV.nm⁻¹) without the activation of the sample (> coulomb barrier)

Beam	Energy (MeV/u)	Ranges (µm)	S _e (keV.nm ⁻¹)	Temperature (°C)	Fluence (ions.cm ⁻²)
³⁶ Ar	1	6.8	7.5	25 - 350	1015
¹³¹ Xe	1.4	8.5	19.7	25 - 350	2-7. 10 ¹⁴

The SRIM-2013 calculation of the dose in a Ti-6Al-4V sample for the ³⁶Ar @36 MeV beam with a fluence of 10¹⁵ ions.cm⁻²

Irradiation set up

Ti-alloys irradiations at CIMAP and NSCL

Facilities	Beam	Energ y [MeV]	Range [µm]	S _e [keV/nm]	Fluence [ions/cm ²]	Max dpa in sample	Date	Number of samples	Туре
IRRSUD	⁸² Kr	25	4.73	9.9	5.10 ¹¹ - 5.10 ¹² - 2.10 ¹⁴	0.6	Jul-2013	6	Foils
	¹³¹ Xe	92	8.5	19.7	2.1011	0.001	Jul-2013	2	Foils
	⁸² Kr	45	6.43	13.1	5.10 ¹¹ - 5.10 ¹³	0.16	Jul-2013	4	Foils
	⁸² Kr	45	6.43	13.1	2.10^{14} $2.5.10^{15}$	8	Oct-2013	6	Foils
	³⁶ Ar	36	6.8	7.5	10 ¹⁵	1.5	Dec-2013	23	TEM and dogbone
	¹³¹ Xe	92	8.5	19.7	$\begin{array}{c} 2 \ 10^{14} \\ 7 \ 10^{14} \end{array}$	3.5	June-2014	6	Dogbone
NSCL	⁴⁰ Ca	2000	800	1.5	6 10 ¹²	10-5	Aug-2013	1 x Ti64	Dogbone

FRIB conditions

- Estimated cumulative dpa after one year of use ~9 dpa with a fluence of 10^{15} ions/cm²
- Se from 0.08 keV/nm (with O beam) and 12.6 keV/nm (with U beam)

Irradiation damage in Ti-6Al-4V

Effect of dose and temperature on the microstructure of neutron irradiated Ti-6A-4V (Tähtinen *et al.*, Sastry *et al.*, Peterson)

Temperature and dose level	Microstructure change observations					
50°C , 0.3 dpa	A high concentration of uniformly distributed defect clusters in the α -phase					
350° C, 0.3 dpa	Dislocation loops Vanadium precipitates					
450°C, Dose 2.1 and 32 dpa	Dislocation loops β -phase precipitates in α phase					
550°C 32 dpa	Extensive void formation Coarse β-precipitates					

Different hardening mechanisms operate at 50°C than at 350°C. P. Budzynski, V. A. Skuratov, and T. Kochanski, "Mechanical properties of the alloy Ti–6Al–4V irradiated with swift Kr ion," *Tribol. Int.*, vol. 42, no. 7, pp. 1067–1073, Jul. 2009.

Relative micro-hardness in Ti-6Al-4V irradiated with swift 250Mev Kr⁺²⁶ at different fluences

Microstructure of the as-received materials Ti-6Al-4V:

Lenticular α -phase with mostly an intergranular β -phase. Intra-granular β -phase was also observed.

The volume fraction of the β -phase was ~6.6 vol.% and the α -phase ~ 93.4 vol.%.

The grain size of the α -phase ranged between 5 ~ 20 μ m.

BSE images of the initial microstructure of Ti-6Al-4V (a) higher and (b) lower magnification

Microstructure of the as-received materials Ti-6Al-4V-1B

The β -phase volume percent was ~ 15 vol.% while the TiB phase volume percent was ~5.9 vol.%.(Chen *et al.*)

BSE images of the initial microstructure of Ti-6Al-4V-1B (a) higher and (b) lower magnification W. Chen et al / *Key Eng. Mater.*, vol. 436, pp. 195–203, May 2010.

Microstructure Characterization

BSE images and IPF maps before (a,b) and after irradiation at the same area (c,d)in a Ti-6Al-4V sample irradiated with ¹³¹Xe with an energy of 92 MeV. The fluence was 2.10¹⁴ ions.cm⁻² and the temperature 25°C

and after

Before

BSE images and IPF maps before (a,b) and after irradiation at the same area (c,d)in a Ti-6Al-4V-1B sample irradiated with ³⁶Ar with an energy of 36 MeV. The fluence was 1.10¹⁵ ions.cm⁻² and the temperature 350°C

> No change in microstructure or grain orientation at the surface.

Hardness measurements

Nano-indentation

Obtain the properties of the materials in depth.

Parameters:

- Berkovich tip
- Strain rate : 0.05s⁻¹
- Poisson ratio=0.33
- Distance between indents: 50µm

Ti-6Al-4V-1B

Ti-6Al-4V

Nano-indentation results for Ti-6Al-4V and Ti-6Al-4V-1B irradiated with ³⁶Ar @36 MeV at fluence of 1.10¹⁵ ions.cm⁻²with the CP –Ti foil on the surface.

Boron addition to Ti-6Al-4V did not change its irradiation resistance

A slight increase in hardness observed for the sample irradiated with a higher fluence (1.10¹⁵ ions.cm⁻²) and lower temperature (T = 350°C) for the higher doses

Hardness measurements Vickers Hardness

➢ Vickers hardness was performed on 4 irradiated Ti-6Al-4V samples.

Vickers Hardness measurements for Ti-6Al-4V irradiated with: a) ¹³¹Xe @ 92 MeV and b) ³⁶Ar @ 36 MeV

The large scatter is due to the presence of two phases in the material A slight increase in hardness was observed for the sample irradiated with a higher fluence at lower loads (< 50g) (depth~ $1.6\mu m$)

Hardness measurements

Vickers Hardness

MICHIGAN STATE

- The lower irradiation damage observed in our investigated Ti-6Al-4V samples compared to results reported by Budzynski et al. (2009) could be explained by
 - The difference in microstructure: larger grains (~100μm)
 - The gs was 5-20µm in our material and gbs act as sinks for radiation-induced-effects

Relative micro-hardness of the Ti–6Al–4V alloy as a function of applied load for Ti-6Al-4V irradiated with: a) Kr⁺²⁶@350 MeV (Budzynski et al. 2009) and b) ¹³¹Xe @ 92 MeV.

P. Budzynski, V. A. Skuratov, and T. Kochanski, "Mechanical properties of the alloy Ti–6Al–4V irradiated with swift Kr ion," *Tribol. Int.*, vol. 42, no. 7, pp. 1067–1073, Jul. 2009.

Discussion

- Effect of the microstructure in the irradiation resistance of this Ti-alloy.
- >Effect of the small grains (5-20 μ m)
- ➢Boron addition causes grain refinement
- Thermomechanical processing can improve its properties

Variation of prior β grain size, *d*, and the α lath size, λ , in Ti64 with wt.% B addition (Sen *et al.*)

Sen et al. Acta Materialia, Volume 55, Issue 15, September 2007, Pages 4983-4993,

Conclusion

- The analyzed hardness and nano-indentation suggest a higher irradiation damage resistivity in the two studied Ti-alloys than reported in literature for Ti-6Al-4V.
- Slight differences in the microstructure caused by the thermomechanical processing may be responsible for this difference.
- ➤ 1% boron addition to Ti-6Al-4V didn't degrade the radiation resistance
- ≻Ongoing and Future work:
 - ✤Irradiation creep test
 - ✤In-situ tensile tests and slip trace analysis: Deformation mechanisms
 - ✤ X-ray diffraction: Investigate phase transformation
 - Effect of the microstructure on the irradiation damage in Ti-alloys

Acknowledgements

- MSU Department of Chemical Engineering and Material Science
- FRIB
 - Mikhail Avilov
 - Reginald Ronningen
- GANIL-CIMAP
 - Florent Durantel
 - Clara Grygiel
 - Isabelle Monnet
 - Florent Moisy
 - Marcel Toulemonde

Thank you for your attention

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

F. Pellemoine, Nov. 2014 MaTX-2, GSI